
 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 1 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 1

 General Features

of Peter’s Data Entry Suite

Click on any of these topics to jump to them:

 Preparing a Page for DES Controls

 Reminders As You Add Controls To The Page

 The PageManager Control Using Adding Properties

 NativeControlExtender Control Using Adding Properties

 The LocalizableLabel Control Using Adding Properties

 Global Settings Editor and custom.DES.config File

 Using These Controls with AJAX Microsoft Telerik Infragistics

 The String Lookup System Resources Database

 The ViewState and Preserving Properties for PostBack

 Page Level Properties and Methods Used by Most Controls

 Establishing Localization for the Web Form

 Using Style Sheets Add to Page Map Controls to their Files

 Using Server.Transfer

 Using Alternative HttpHandlers (including SharePoint)

 Expanded Properties Editor

 Browser Support

 Troubleshooting Handling JavaScript errors Runtime Problems

 Exploring The Current Settings: DES Debugging Reports

 Table of Contents

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 2 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 2

Table of Contents

License Information..7

Platform Support ..7

Technical Support and Other Assistance..8
Troubleshooting Sections ...8
Developer’s Kit...8
PeterBlum.Com Message Board...8
Getting Product Updates...8
Technical Support ...8

PREPARING A PAGE FOR DES CONTROLS ..10

REMINDERS AS YOU ADD CONTROLS TO THE PAGE...11

THE PAGEMANAGER CONTROL...12

Features ...12

Using the PageManager..13
When to Use the PageManager...14
Setting Up AJAX in the PageManager Control ..15

Adding the PageManager...16

PageManager Properties..17
AJAX Properties...18
Culture Properties ...20
Draw User’s Attention to Errors Properties ..21
Validation Properties ..23
Interactive Pages Properties..25
TextBoxes Properties..26
Miscelleneous Properties ..27

NATIVECONTROLEXTENDER CONTROL ...28

Features ...28

Using the NativeControlExtender ...29
Adding Hints...29
Switching to Enhanced ToolTips..30
Extending Buttons, LinkButtons, and ImageButtons..31

Validation Using the DES Validation Framework..31
Other Properties ..31

Extending BulletedList, Menu, and TreeView ...32
BulletedList...32
Menu...32
TreeView ..32

Attach the ChangeMonitor..33
Provide DES Validation on AutoPostBack...34

Overcoming a bug in Google Chrome 1 ...34
Intercept the ENTER key to click a button ...35
Extend TextBoxes to use DES’s SmartChange Feature ...36

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 3 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 3

Adding the NativeControlExtender ..37

NativeControlExtender Properties..39
Control to Extend Properties...39
Submit the Page Properties ...40
Hint Properties ..43
ToolTip Properties ..45
Behavior Properties ..46

THE LOCALIZABLELABEL CONTROL ..47

Using the LocalizableLabel Control..48

Adding the LocalizableLabel Control...49

Properties of the LocalizableLabel Control..50

GLOBAL SETTINGS EDITOR AND CUSTOM.DES.CONFIG FILE..51

Using the Global Settings Editor ...51
Debugging the Global Settings Editor Properties ...53

Programmatically Assigning Globals..54
Adding Globals After Config Files Load..54

DES.config and Custom.DES.config File ..56

EXPANDED PROPERTIES EDITOR..57
Using the Expanded Properties Editor ..58

USING THESE CONTROLS WITH AJAX ..59
Using Microsoft ASP.NET AJAX..60
Using Telerik RadAjax ...71
Using other AJAX-enabled Telerik controls ..83
Using Infragistics AJAX-enabled Controls ..92
Using ComponentArt CallBack .. 101
Using MagicAjax.. 112
Using other AJAX Products ... 121

AJAXManager Properties ... 131
Static (Shared) Properties ... 131
Page-Level Properties ... 131

Other AJAXManager Methods ... 132
PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate... 132

Parameters... 132
Example .. 132

Analyzing the InAJAXUpdate Properties on DES Controls... 133
Querystring parameter .. 133
Add a control to the page.. 133
Using the Analysis .. 133

THE STRING LOOKUP SYSTEM...134

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 4 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 4

Datasources ... 135

Elements Needed In Your DataSource.. 136

Using the Resource Manager ... 137
Mapping the String Group names to the associated resource files.. 138
Add .resx Files for each String Group to your Web Application.. 139

Adding These Files In Visual Studio 2005/2008 .. 139
Adding These Files In Visual Studio 2002-2003 and Web Application Projects in VS2005/8 .. 139
Non-Visual Studio.Net Users.. 139

Supporting Cultures .. 140
Entering Strings and Compiling Them ... 141
Using non-default Resource files and Assemblies.. 142

Properties of the PeterBlum.DES.StringLookup Class... 142

Using a Database... 146
Mapping String Group Names to their Associated Values in the Table ... 147
Set up a Database With The Appropriate Tables .. 148
Add the DESLookupString Stored Procedure .. 149
Provide the ConnectionString to the Database ... 150

Writing Your Own Lookup String Event Handler.. 151
Create the Event Handler Method... 151
Using the OnLookupString property .. 154

Calling The String Lookup System ... 155

THE VIEWSTATE AND PRESERVING PROPERTIES FOR POSTBACK..157
TrackProperty Method.. 157
ViewState Property – Promoting the ViewState to Public.. 157
Properties Automatically Saved in the ViewState .. 158

PAGE LEVEL PROPERTIES AND METHODS USED BY MOST CONTROLS..159

What is the PeterBlum.DES.Globals.Page property?.. 159

Properties on PeterBlum.DES.Globals.Page .. 160
SpinnerManager Property ... 163
Debugging PeterBlum.DES.Globals.Page Properties ... 165

Methods on PeterBlum.DES.Globals.Page ... 166
AttachCodeToEvent Method .. 166

ESTABLISHING LOCALIZATION FOR THE WEB FORM..167
Localization for the Entire Web Site .. 167
Default Localization for a Web Form... 167
Change Localization Based on the User’s Culture ... 168

For the Entire Site ... 168
For the Current Page ... 170

USING STYLE SHEETS ...171

Adding Style Sheet Files To The Page... 172
ASP.NET 2 and above Users .. 172
ASP.NET 1.x Users .. 173

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 5 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 5

Identifying the Style Sheet File for a Specific Control... 174

Customizing the URLs to Each Style Sheet File... 175
Changing the URLs globally .. 175

Using the web.config file.. 175
Programmatically within Application_Start()... 176

Changing the URL on a Page ... 177
Disabling the Output of Link Tags Globally .. 178

Using the web.config file.. 178
Programmatically within Application_Start()... 179

Disabling the Output of Link Tags on a Page... 180

Browser Sensitive Style Sheet Class Names.. 181
Replacing Class Names .. 181

First time – Add the CheckCssClass event ... 181
Each time – Adding a new style sheet class.. 182

Compressing and Merging Files .. 184
Modifying the merging and compression features.. 184
Troubleshooting: How to see what DES output.. 185
Troubleshooting: Changing the URL to GetFiles.aspx... 185
Troubleshooting: Turning of Gzip/Deflate Compression ... 185

Special Parsing Features .. 186

Support for Your Own Style Sheet Files... 187
Registering your Style Sheet Files.. 187

Using web.config .. 187
Using the Application_Start() method .. 187

Including your Style Sheet Files on the Page ... 187

USING SERVER.TRANSFER...188
Prior to the Server.Transfer Call ... 188
In the Destination Page of the Server.Transfer Call ... 188

USING ALTERNATIVE HTTPHANDLERS (INCLUDING SHAREPOINT) ..188

USING A REDISTRIBUTION LICENSE ...189

HOW ASP.NET INFLUENCES PETER’S DATA ENTRY SUITE...190

Themes and Skins ... 190

Automatic linking to the DES Style Sheet file .. 190

Localization ... 190

Validation on AutoPostBack of the TextBox and other data entry controls ... 190

ValidationGroup property on submit controls .. 190

Page.SetFocus vs. PeterBlum.DES.Globals.Page.InitialFocusControl... 191

XHTML Compatibility... 191

Obsolete features found in the ASP.NET 1.x assemblies of DES.. 191

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 6 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 6

BROWSER SUPPORT ...192

The TrueBrowser Class.. 193
Browser Type and Version ... 194
Browser Capabilities... 196
Product Feature Support ... 198

Customizing A TrueBrowser Object... 200
Handling UnknownBrowsers.. 202

Extending Support For More Browsers.. 203

Adjusting the ErrorFormatter Based On The Browser .. 204

TROUBLESHOOTING ..206

Handling JavaScript errors ... 207
What to do when none of the suggestions above work... 211

Exploring The Current Settings: DES Debugging Reports .. 212
Running a DES Debugging Report from http://localhost ... 213
Running a DES Debugging Report from when the Server is not local... 214

Access by known IP addresses ... 214
Access by password .. 215

Common Error Messages... 216
What to do when you get version errors ... 218

Runtime Problems .. 219

Design Mode Problems... 221

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 7 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 7

License Information
This document includes information for features shared amongst the modules of Peter’s Data Entry Suite. All licensees have
access to the controls and features described here, except where noted.

Platform Support
This product was written for Microsoft ASP.NET. It supports all versions from 1.0 up. It includes assemblies specific to
ASP.NET 1.x and ASP.NET 2. It is compatible with all browsers, scaling down automatically when the browser has a
limitation. In some cases, that means the control turns off its client-side functionality or turns itself off entirely.

This product is designed to scale properly even when the Page’s ClientTarget property causes the HttpBrowserCapabilities
(Request.Browser) to falsely state the browser. In other words, you can’t fool these controls with an upLevel clientTarget.
This is absolutely necessary because feeding the wrong browser will generate incorrect client side scripts giving the user’s
scripting errors. It was also considered a requirement to hide features that didn’t work on the browser to give the user the best
interface. For more, see “Browser Support”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 8 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Technical Support and Other Assistance
PeterBlum.com offers free technical support. This is just one of the ways to solve problems. This section provides all of your
options and explains how technical support is set up.

Troubleshooting Sections
Most guides include an extensive set of problems and their solutions. See “Troubleshooting”. This information will often save
you time.

Developer’s Kit
The Developer’s Kit is a free download that provides documentation and sample code for building your own classes with this
framework. It includes:

 Developer’s Guide - Overviews of each class with examples, step-by-step guides, and other tools to develop new
classes.

 MSDN-style help file - Browse through this help file to learn about all classes and their members.

 Sample code in C# and VB.

You can download it from http://www.peterblum.com/DES/DevelopersKit.aspx.

PeterBlum.Com Message Board
Use the message board at http://groups.yahoo.com/groups/peterblum to discuss issues and ideas with other users.

Getting Product Updates
As minor versions are released (4.0.1 to 4.0.2 is a minor version release), you can get them for free. Go to
http://www.PeterBlum.com/DES/Home.aspx. It will identify the current version at the top of the page. You can read about all
changes in the release by clicking “Release History”. Click “Get This Update” to get the update. You will need the serial
number and email address used to register for the license.

As upgrades are offered (v4.0 to v4.1), PeterBlum.com will determine if there is an upgrade fee at the time. You will be
notified of upgrades and how to retrieve them through email.

PeterBlum.com often adds new functionality into minor version releases.

Technical Support
You can contact Technical Support at this email address: Support@PeterBlum.com. I (Peter Blum) make every effort to
respond quickly with useful information and in a pleasant manner. As the only person at PeterBlum.com, it is easy to imagine
that customer support questions will take up all of my time and prevent me from delivering to you updates and cool new
features. As a result, I request the following of you:

 Please review the Troubleshooting section first in most guides.

 Please try to include as much information about your web form or the problem as possible. I need to fully understand
what you are seeing and how you have set things up.

 If you have written code that interacts with my controls or classes, please be sure you have run it through a debugger
to determine that it is working in your code or the exact point of failure and error it reports.

 If you are subclassing from my controls, I provide the DES Developer's Kit that includes the Developers Guide.pdf,
Classes And Types help file, and sample files. I can only offer limited assistance as you subclass because this kind of
support can be very time consuming. I am interested in any feedback about my documentation’s shortcomings so I
can continue to improve it.

 I cannot offer general ASP.NET, HTML, style sheet, JavaScript, DHTML, DOM, or Regular Expression mentoring.
If your problem is due to your lack of knowledge in any of these technologies, I will give you some initial help and
then ask you to find assistance from the many tools available to the .Net community. They include:

http://www.peterblum.com/DES/DevelopersKit.aspx�
http://groups.yahoo.com/groups/peterblum�
http://www.peterblum.com/DES/Home.aspx�
mailto:Support@PeterBlum.com�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 9 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

o Books

o www.asp.net forums and tutorials

o Microsoft’s usenet newsgroups such as microsoft.public.dotnet.framework.aspnet. See
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet

o Google searches. (I virtually live in Google as I try to figure things out with ASP.NET.)
http://www.Google.com. Don’t forget to search the “Groups” section of Google!

o http://aspnet.4guysfromrolla.com/, http://www.dotnetjunkies.com, http://www.aspalliance.com/

o For DHTML, Microsoft provides an excellent guide at http://msdn2.microsoft.com/en-
us/library/ms533050.aspx.

o For DOM, start with the DHTML guide. Topics that are also in DOM are noted under the heading
“Standards Information”

o For JavaScript, I recommend http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference.

As customers identify issues and shortcomings with the software and its documentation, I will consider updating these areas.

http://www.asp.net/�
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet�
http://www.google.com/�
http://aspnet.4guysfromrolla.com/�
http://www.dotnetjunkies.com/�
http://www.aspalliance.com/�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 10 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Preparing a Page for DES Controls
While you can add Peter’s Data Entry Suite (“DES”) controls to your page using design mode, ASP.NET Declarative
Syntax or program code, there are several items to review that make the page ideal for the controls.

 Style Sheets – Link to the style sheet files used by these controls. This is usually automatic in ASP.NET 2+. If using
ASP.NET 1.x or they don’t work in an ASP.NET 2 page, add this line to inner content of the <head> tag.

<%= PeterBlum.DES.StyleSheetManager.GetLinkTags() %>

See “Adding Style Sheet Files To The Page” for details and troubleshooting topics.

 Register with the Page – ASP.NET 1.x users must have this <% @Register %> tag to the top of their web form, user
control or master page. It is added automatically using the toolbox feature of Visual Studio’s design mode.

<%@ Register TagPrefix="des" Namespace="PeterBlum.DES"
Assembly="PeterBlum.DES" %>

Note: ASP.NET 2 users should have an entry in their web.config file to avoid this. The entry was set up when running the
Web Application Updater utility.

 Convert Native Validators – If you are adding DES’s validation system to an existing page, convert that page so that the
native ASP.NET validators and buttons are swapped with those from DES.

Use the Web Application Utility (described in the Installation Guide). Select the Convert Native Controls to their
DES Equivalents radiobutton and One code file or web form from the DropDownList. Click Next and follow the
instructions.

 PageManager control – If you work in design mode or ASP.NET Declarative Syntax, consider adding the PageManager
control so you can easily access page-level properties. See “The PageManager Control”.

(Alternatively, you can write code in Page_Load() to edit properties on PeterBlum.DES.Globals.Page. See “Page
Level Properties and Methods Used by Most Controls”.)

<des:PageManager id="PageManager1" runat="server" />

 Global Settings – Establish default values for features as you introduce them to your web application. Use the Global
Settings Editor. See “Global Settings Editor and custom.DES.config File”.

 AJAX – If these controls will be part of an AJAX update on this page, let DES know the AJAX framework and which
controls are involved. See “Using These Controls with AJAX”. Failure to follow these directions will result in incorrect
operation and JavaScript errors.

<des:PageManager id="PageManager1" runat="server"
 AJAXFramework="MicrosoftAJAX" />

 String Lookup – If you want these controls to get their strings from resources or a database, make sure the String
Lookup System is set up. See “The String Lookup System”.

 Localization – Many of these controls depend on culture specific information for date, time and numbers. Confirm that
the page is using the desired culture settings. See “Establishing Localization for the Web Form”.

 Security – To protect against hackers using SQL Injection and Cross Site Scripting attacks, make sure the Peter’s Input
Security module is set up (see the Input Security Installation Guide) and add the PageSecurityValidator control to
your page.

<des:PageSecurityValidator id="PageSecurityValidator1" runat="server" />

 Licensing – When using a Redistribution License, add the License Key to the page. See “Using a Redistribution
License”.

 Alternative HttpHandlers – When these controls are requested by an alternative HttpHandler such as SharePoint, use
this line in Page_Load():

PeterBlum.DES.Globals.UsingAltHttpHandler(Page)

See “Using Alternative HttpHandlers (including SharePoint)” for details.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 11 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Reminders As You Add Controls To The Page
 Most textboxes should have a validator attached to be sure the text is legal. Do not depend on JavaScript to be active. All

the enhancements available to textboxes are not present without JavaScript.

o Those that permit any random pattern of any characters will not have a validator, except potentially the
FieldSecurityValidator from Peter’s Input Security module.

o Those that use a specific data type, like date, time, or number, should have a DataTypeCheckValidator.

o Those that have a specific character set should have a CharacterValidator.

o Those that have a specific pattern, like a phone number, should have a RegExValidator.

o Those that have a limited list of valid text values should have the CompareToStringsValidator.

o Those that have a text length limit should have the TextLengthValidator.

 When adding DES’s validators, the buttons play an important role:

o For buttons that you want to fire validation, use DES Buttons or assign the native button to a
NativeControlExtender.

o Make sure the validation group name of the button matches the group name on the validator.

o For any button that you don’t want to run validation, set its CausesValidation property to false.

 Always make sure server side validation is set up.

o If your button’s SkipPostBackEventsWhenInvalid property is False, test
PeterBlum.DES.Globals.Page.IsValid is true inside of your button’s postback event handler. If it’s false, do
not use the data on the page and allow the page to be redrawn.

o If a control other than a button submits the page and you need validation, call
PeterBlum.DES.Globals.Page.Validate("groupname") inside that control’s postback event
handler. Then test PeterBlum.DES.Globals.Page.IsValid is true before using the data.

 If you are using AJAX:

o Set the InAJAXUpdate property to true on any DES control that is either inside of an AJAX update or
references a control within the AJAX update.

o If that control is added after the AJAX update, you may need to preregister its features when the page is initially
generated. See “Using These Controls with AJAX”.

 If you change the value of a property programmatically and need its value to be preserved for postback, call the
ViewStateMgr.TrackProperty() method. See “The ViewState and Preserving Properties for PostBack”.

 Use the DES TextBox control or assign a NativeControlExtender to the native TextBox to get similar functionality. The
Web Application Updater can convert native textboxes to DES textboxes.

 Take advantage of SmartTags in the Visual Studio 2005, 2008 and Visual Web Developer design mode interface. DES
controls offer their most important properties.

 DES provides extensive reporting and analysis tools to expose the details of what is going on behind the scenes. They are
easy to access and make great debugging tools. See “Exploring The Current Settings”.

 Instead of using the standard Properties Editor, choose the Expanded Properties Editor. Then click the (Best Order)
button to view properties in the organization recommended by PeterBlum.com. Expanded Properties Editor is available
from:

o SmartTag using “Expanded Properties Editor…”

o Right click on the control in design mode and select the Expanded Properties Editor command.

o The Visual Studio/VWD Properties Editor has the Expanded Properties Editor command at the bottom.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 12 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

The PageManager Control
The PeterBlum.DES.Globals.Page object provides numerous settings that determine how the DES controls will operate. (See
“What is the PeterBlum.DES.Globals.Page property?”.) Like all objects, it must be set programmatically.

The PageManager Control lets you use design mode and the ASP.NET declarative syntax to set properties of
PeterBlum.DES.Globals.Page so you don’t have to write any code. For design mode users, it makes sense to add this control
to each web form using DES controls early on, so it’s ready for you when you need it.

Click on any of these topics to jump to them:

 Features

 Using the PageManager

 Adding the PageManager

 PageManager Properties

Features
Each of its features relates to an aspect of DES that is covered elsewhere. The PageManager effectively groups together page-
level settings in one place.

You can set these features with the PageManager control:

 Make DES aware of AJAX on the web form

 Validation page-level properties

 Culture used for localizing the page

 HintManager – rules used by the Interactive Hints feature

 SpinnerManager – rules used by spinners on textboxes

 ChangeMonitor – rules used by the ChangeMonitor

 An assortment of other properties from PeterBlum.DES.Globals.Page.

The SmartTag for the PageManager has many useful features:

 Quickly set up AJAX

 Access to the most popular validation properties

 Run the Global Settings Editor (also in the controls’ context menu)

 Open any of the User’s Guides (also in the controls’ context menu)

Note: SmartTag is a feature of design mode starting in Visual Studio 2005 and Visual Web Developer. It appears on the upper
right of a control in the design mode surface.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 13 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the PageManager
Click on any of these topics to jump to them:

 When to Use the PageManager

 Setting Up AJAX in the PageManager Control

The PageManager control supports other DES controls and features. Here’s how it is usually used:

 Add it to the page.

WARNING: There should only be one per page. If you put it into a MasterPage it will cover all pages contained in the
MasterPage. If you put it into a UserControl, make sure that UserControl is used once and no other UserControl has a
PageManager.

 If AJAX is used on the page, see “Setting Up AJAX in the PageManager Control”.

 Apply any initial settings to its properties. Consider using the SmartTag and Extended Properties Editor.

 As you work with the features of DES on the page, return and customize the settings

 Use the SmartTag or controls’ context menu when you need to open any of DES’s User’s Guides

 Use the SmartTag or controls’ context menu when you want to run the Global Settings Editor.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 14 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

When to Use the PageManager
Generally you add the PageManager when you prefer to work in Visual Studio’s design mode or ASP.NET Declarative
Syntax. If you are comfortable assigning properties programmatically, most of the properties of PageManager can be set in
your Page_Load() method like this:

PeterBlum.DES.Globals.Page.propertyname = value

Assigning values programmatically takes less CPU time than using the PageManager. So if you are interested in the fastest
page loads possible, work programmatically.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 15 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Setting Up AJAX in the PageManager Control
When AJAX is used on the page, DES requires some additional action. See “Using These Controls with AJAX”. You can
simplify the process by using the design mode features of the PageManager instead of setting the AJAXManager class
programmatically.

Here’s how:

1. Select your AJAX framework in the AJAXFramework property. SmartTag name: “Using this AJAX Framework”

2. Assign the correct AJAX control to the AJAXControlID property. SmartTag name: “Main AJAX Control…”

AJAX Framework Control ID to assign to AJAXControlID

Microsoft ASP.NET AJAX ScriptManager or ToolkitScriptManager

Telerik RadAJAX (not the “Prometheus”
version)

RadAJAXManager or RadAJAXPanel

Telerik RadAJAX (using “Prometheus”) ScriptManager

Infragistics AJAX The “WARP” enabled control: WebAsyncRefreshPanel,
UltraWebTab, UltraGauge

MagicAJAX AjaxPanel

3. Evaluate your usage of DES controls. Are most involved in an AJAX update? If so, set AllInAJAXUpdate to true.
SmartTag name: “Most or all DES controls…” Otherwise, set it to false and on individual DES controls set their
InAJAXUpdate property to true.

4. In the Properties Editor, expand the PreLoadForAJAX property. If in the SmartTag, first select More Properties.

5. Review the list of DES features within PreLoadForAJAX. If any item will load for the first time after an AJAX update,
set it to true.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 16 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding the PageManager
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Add a PageManager control to the page.

Visual Studio and Visual Web Developer Users

Drag the PageManager control from the Toolbox onto your web form.

Text Entry Users

Add the control (inside the <form> area):

<des:PageManager id="[YourControlID]" runat="server" />

Programmatically creating the PageManager control

While you can work with the PageManager control programmatically, it is a layer above features you can access directly
through the PeterBlum.DES.Globals.Page and PeterBlum.DES.AJAXManager objects. Consider using their
properties directly.

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. The SmartTag also offers
some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

2. Set the properties associated with the PageManager. See “PageManager Properties”.

There are several properties that are objects. Their child properties are added as shown here:

 PreLoadForAJAX – Add to the <des:PageManager> tag like this:

<des:PageManager PreLoadForAJAX-PropertyName="value" />

 MoreCultureInfo – Add to the <des:PageManager> tag like this:

<des:PageManager MoreCultureInfo-PropertyName="value" />

 HintManager – Add to the <des:PageManager> tag like this:

<des:PageManager HintManager-PropertyName="value" />

 ChangeMonitor – Add to the <des:PageManager> tag like this:

<des:PageManager ChangeMonitor-PropertyName="value" />

 SpinnerManager – Add to the <des:PageManager> tag like this:

<des:PageManager SpinnerManager-PropertyName="value" />

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 17 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

PageManager Properties
Click on any of these topics to jump to them:

 AJAX Properties

 Draw User’s Attention to Errors Properties

 Validation Properties

 Interactive Pages Properties

 TextBoxes Properties

 Miscelleneous Properties

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 18 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

AJAX Properties
These properties determine how AJAX is set up on the page. See “Setting Up AJAX in the PageManager Control”.

The Properties Editor shows these properties in the category “AJAX”.

WARNING: Failure to set up AJAX property will result in JavaScript errors after an AJAX Update.

 AJAXManager (enum PeterBlum.DES.AJAXFrameworkName) – If using AJAX, this determines which AJAX
Framework that you are using.

You should also set up AJAXControlID, AllInAJAXUpdate, and PreLoadForAJAX properties. See “Setting Up
AJAX in the PageManager Control”.

The enumerated type PeterBlum.DES.AJAXFrameworkName has these values:

o None - Not using AJAX on this page, or AJAX doesn't affect these controls.

o Unknown - Do not use this.

o MicrosoftAJAX - Microsoft ASP.NET AJAX. AJAXControlID can be the ScriptManager,
ToolkitScriptManager, or left unassigned. When left unassigned, more CPU time is used to find the
ScriptManager control.

o TelerikRadAJAX - Telerik's RadAJAX, including the Prometheus version. For the non-Prometheus version,
AJAXControlID must be the RadAjaxManager or RadAjaxPanel control. For the Prometheus version,
AJAXControlID must be the ScriptManager.

o MagicAJAX - MagicAJAX. AJAXControlID must be the AJAXPanel control.

o InfragisticsAJAX - Infragistics AJAX enabled controls. AJAXControlID must be an AJAX-enabled
control including the WebAsyncRefreshPanel, UltraWebTab, and UltraGauge

It defaults to AJAXFrameworkName.None.

If you are using any other framework, see “Using other AJAX Products”.

 AJAXControlID (string) – When PeterBlum.DES.PageManager.AJAXFramework is assigned, most frameworks need to
know about a specific control that handles the callbacks. This property takes the ID to that control.

Here are the values expected based on AJAXFramework:

o MicrosoftAJAX - AJAXControlID can be the ScriptManager, ToolkitScriptManager, or left unassigned.
When left unassigned, more CPU time is used to find the ScriptManager control.

o TelerikRadAJAX - For the non-Prometheus version, AJAXControlID must be the RadAjaxManager or
RadAjaxPanel control. For the Prometheus version, AJAXControlID must be the ScriptManager.

o MagicAJAX - AJAXControlID must be the AJAXPanel control.

o InfragisticsAJAX - AJAXControlID must be an AJAX-enabled control including the
WebAsyncRefreshPanel, UltraWebTab, and UltraGauge.

This control must be in the same naming container as PageManager or any ancestor naming container, including a
MasterPage.

If the location of this control is not in one of those naming containers, you must programmatically set up the
AJAXManager object as described in the “Using These Controls with AJAX”.

 AllInAJAXUpdate (Boolean) – When using AJAX, each DES control involved in the AJAX callback must be marked as
in the AJAX update.

This property sets all that way but it’s not optimal because all DES controls will transmit their data instead of just those
involved in the AJAX update. For better performance, leave this false and set the InAJAXUpdate property to true
on individual DES controls.

It defaults to false.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 19 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 PreLoadForAJAX (PeterBlum.DES.PageManager.PreLoadFeatures) – If a DES feature is not on the initial page but
could be added by a callback, identify it here. This property is an object with a list of Boolean properties. They all default
to false. When set to true, their associated feature is preloaded.

PageManager.PreLoadForAJAX properties

Validators Use when no validator is on the initial page but will be added during a callback.
ValidationSummary Use when no ValidationSummary is on the initial page but will be added during a

callback.
TextBoxes Use when no DES TextBox is on the initial page but will be added during a callback. This

includes TextBox, FilteredTextBox, IntegerTextBox, DecimalTextBox, PercentTextBox,
and CurrencyTextBox. Also consider Hints, AutoPostBack.

MultiSegmentDataEntry Use when no MultiSegmentDataEntry control is on the initial page but will be added
during a callback. Also consider Hints.

Hints Use when no hints are on the initial page but will be used during a callback. This also
applies when using the hint properties on DES’s textboxes and MultiSegmentDataEntry
controls.

DateTextBoxes * Use when no DateTextBox, AnniversaryTextBox, or MonthYearTextBox is on the initial
page but will be added during the callback. Also consider Hints, AutoPostBack.

TimeTextBoxes * Use when no TimeOfDayTextBox or DurationTextBox is on the initial page but will be
added during the callback. Also consider Hints, AutoPostBack.

Calendar * Use when no Calendar is on the initial page but will be added during the callback.
MultiSelectionCalendar* Use when no MultiSelectionCalendar is on the initial page but will be added during the

callback.
MonthYearPicker * Use when no MonthYearPicker or PopupMonthYearPicker is on the initial page but will

be added during the callback.
TimePicker * Use when no TimePicker or PopupTimePicker is on the initial page but will be added

during the callback.
SpecialDates Use when no SpecialDates control is on the initial page but will be added during the

callback.
ContextMenu Use when no ContextMenu control is on the initial page but will be added during the

callback.
FieldStateControllers Use when no type of FieldStateController is on the initial page but will be added during a

callback. This includes FieldStateController, MultiFieldStateController,
FSCOnCommand, and MultiFSCOnCommand.

CalculationControllers Use when no CalculationController is on the initial page but will be added during a
callback.

TextCounter Use when no TextCounter is on the initial page but will be added during the callback.
AutoPostBack Use when you validate on AutoPostBack.
ChangeMonitor Use when the ChangeMonitor is added to the page after postback.
SubmitControls Use when no Button, LinkButton, or ImageButton is on the initial page but will be added

during the callback.
DisableOnSubmit Use when no Button uses the DisableOnSubmit feature on the initial page but will be used

during a callback.
Popups Use when you create a control using the Popup code.

* Also requires calling the PreloadForAJAX() method in Page_Load()

ASP.NET Declarative Syntax

<des:PageManager PreLoadForAJAX-PropertyName="value" />

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 20 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Culture Properties
DES is localized through these two properties: PeterBlum.DES.Globals.Page.CultureInfo and
PeterBlum.DES.Globals.Page.MoreCultureInfo. The PageManager properties allow changing some of the most common
aspects of these objects.

The Properties Editor shows these properties under the category “Culture”.

 CultureName (string) – Overrides the page's current CultureInfo using the culture name specified.

The name must be compatible with CultureInfo.CreateSpecificCulture(), such as 'en-US'. See this topic
for a list of valid Culture Names: http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx.

When assigned, it will set PeterBlum.DES.Globals.Page.CultureInfo with a CultureInfo object defined by this culture
name.

When blank, PeterBlum.DES.Globals.Page.CultureInfo uses the page's or site's culture as described in “Establishing
Localization for the Web Form”.

It defaults to "".

 MoreCultureInfo (ClientSideCultureInfo) – Additional culture related properties that do not exist in the CultureInfo
class. They are only used by the Peter’s Date and Time module.

It defines the CenturyBreak, additional date separators for the DateTextBox, the first day of the week, and time format for
the TimeOfDayTextBox. PeterBlum.DES.ClientSideCultureInfo is described in the “The
PeterBlum.DES.Globals.Page.MoreCultureInfo property” of the Date and Time User’s Guide.

ASP.NET Declarative Syntax

<des:PageManager MoreCultureInfo-PropertyName="value" />

 ShortDatePatternOverride (string) – When assigned, it replaces the value of
PeterBlum.DES.Globals.Page.CultureInfo.DateTimeFormat.ShortDatePattern.

Always use the standard ShortDatePattern rules of one or two ‘M’ characters for month, 4 ‘y’ characters for year, and one
or two ‘d’ characters for day. Always include a single character date separator to delimit it. For example: yyyy-MM-d,
dd.yyyy.MM, d/M/yyyy.

The date separator character will be extracted from your pattern automatically and assigned to
PeterBlum.DES.Globals.Page.CultureInfo.DateTimeFormat.DateSeparator.

It defaults to "".

 LongDatePatternOverride (string) – When assigned, it replaces the value of
PeterBlum.DES.Globals.Page.CultureInfo.DateTimeFormat.LongDatePattern.

Always use the standard ShortDatePattern rules of 3 or 4 ‘M’ characters for month, 4 ‘y’ characters for year, and one or
two ‘d’ characters for day. Use any formatting characters between them. For example: MMMM dd, yyyy.

It defaults to "".

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 21 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Draw User’s Attention to Errors Properties
Theses properties are used by the DES Validation Framework and are described in the Validation User’s Guide under the
topic “Drawing User’s Attention to the Error”. Each of these properties has a default value which will use a global setting
defined in the Global Settings Editor.

The Properties Editor shows these properties under the category “Draw Users Attention to Errors”.

Alert: These properties are only available when you have a license covering Peter’s Professional Validation.

 FocusOnChange (enum TrueFalseDefault) – Set focus to the control which caused a validation error immediately after
editing and focus leaves the control. When set to TrueFalseDefault.Default, the page uses this global setting:
DefaultFocusOnChange.

 FocusOnSubmit (enum TrueFalseDefault) – Set focus to the control when the user attempts to submit the page and a
validation error is found. When set to TrueFalseDefault.Default, the page uses this global setting:
DefaultFocusOnSubmit.

 ShowAlertOnChange (enum TrueFalseDefault) – Determines if an alert appears when a validation error occurs
immediately after an edit. When set to TrueFalseDefault.Default, the page uses this global setting:
DefaultShowAlertOnChange.

 ShowAlertOnSubmit (enum TrueFalseDefault) – Determines if an alert appears when the user attempts to submit the
page and a validation error is found. When set to TrueFalseDefault.Default, the page uses this global setting:
DefaultShowAlertOnSubmit.

 ChangeStyleOnControlsWithError (enum TrueFalseDefault) – Determines if controls with a validation error change
their style, using style sheets, to show an error.

By default, the style sheet classes DESVALFieldWithError, DESVALListWithError, and
DESVALCheckBoxWithError are where you set their appearance in the
DES\Appearance\Validation\Validation.css file. These style sheet classes are merged with the original class
defined on the CssClass property of the control.

When set to TrueFalseDefault.Default, the page uses this global setting:
DefaultChangeStyleOnControlsWithError.

 HiliteFieldsNearbyError (enum TrueFalseDefault) – Determines if the HiliteFields feature is enabled. When it is, fields
identified by the validator's Labels and HiliteFields property will change their appearance when that validator detects an
error.

By default, the style sheet classes DESVALTextHiliteFields and DESVALNonTextHiliteFields are where
you set their appearance in the DES\Appearance\Validation\Validation.css file. These style sheet classes are
merged with the original class defined on the CssClass property of the control.

When set to TrueFalseDefault.Default, the page uses this global setting: DefaultHiliteFieldsNearbyError.

 BlinkOnChange (enum PeterBlum.DES.BlinkMode) – Enables blinking and determines how many blinks occur to a
validator error message after a change to the field.

When set to BlinkMode.Off, the page uses this global setting: DefaultBlinkOnChange.

 BlinkOnSubmit (enum PeterBlum.DES.BlinkMode) – Enables blinking and determines how many blinks occur to a
validator error message when the user submits the page and there are validation errors.

When set to BlinkMode.Off, the page uses this global setting: DefaultBlinkOnSubmit.

 BlinkTime (integer) – The number of milliseconds between blinks of an error message. Used by BlinkOnChange and
BlinkOnSubmit properties.

When set to 0, the page uses this global setting: DefaultBlinkTime.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 22 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 AlertTemplate (string) – Places text before and after the validation error messages when they are shown in an alert.

Used by the ShowAlertOnChange and ShowAlertOnSubmit features.

The token “{0}” will be replaced by the error messages. For example, “Please correct these
errors:\n{0}.”.

When "", the page uses this global setting: DefaultAlertTemplate.

 AlertTemplateLookupID (string) – An alternative to AlertTemplate that retrieves a string from the String Lookup
System. Strings must be in the String Group of ValidationMisc.

When "", the page uses this global setting: DefaultAlertTemplateLookupID.

 AlertErrorLeadText (string) – Places text before each error message shown in an alert. Use it to denote a new message.
For example, "-" or "*".

When "", the page uses this global setting: DefaultAlertErrorLeadText.

 AlertErrorListStyle (enum TrueFalseDefault) – Used when showing error messages in an alert. Formats the list of error
messages shown in an alert.

When TrueFalseDefault.True, error messages are listed on separate lines.

When TrueFalseDefault.False, error messages are listed in a single paragraph style.

When TrueFalseDefault.Default, the page uses this global setting: DefaultAlertErrorListStyle.

 FocusAfterAlert (enum TrueFalseDefault) – Set focus to the control which caused a validation error when the user clicks
on an ErrorFormatter that opens an alert. The focus is set after the alert is closed.

When set to TrueFalseDefault.Default, the page uses this global setting: DefaultFocusAfterAlert.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 23 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Validation Properties
Here are validation properties in addition to those that draw the user’s attention to errors (see above). Theses properties are
used by the DES Validation Framework and are described in the Validation User’s Guide. Each of these properties has a
default value which will use a global setting defined in the Global Settings Editor.

The Properties Editor shows these properties under the category “Validation”.

Alert: These properties are only available when you have a license covering Peter’s Professional Validation.

 ConfirmMessage (string) – When assigned, this is used as the confirm message shown by validation when the page is
submitted. When unassigned, the page uses the global setting: DefaultConfirmMessage.

Alert: Requires licenses covering Peter’s Professional Validation and Peter’s Interactive Pages.

 ConfirmMessageLookupID (string) – An alternative to ConfirmMessage that retrieves a string from the String Lookup
System. Strings must be in the Confirm String Group.

When "", the page uses this global setting: DefaultConfirmMessageLookupID.

Alert: Requires licenses covering Peter’s Professional Validation and Peter’s Interactive Pages.

 ConfirmMessageGroup (string) - The validation group name that must match the submit button’s group before showing
the confirm message box.

When "", the page uses this global setting: DefaultConfirmMessageGroup.

Alert: Requires licenses covering Peter’s Professional Validation and Peter’s Interactive Pages.

 DefaultGroup (string) – The validation group name that is used when the user hits ENTER on the page to submit. Not
used when blank.

In this situation, the buttons don't get their client-side onclick event handler run. So no button applies its Group property
to the submission code. So this is a fall-back.

It actually only establishes an initial group on the page. Once the user clicks a button, it changes the default to that group.

It defaults to "" and does not have a global setting.

 AutoDisableValidators (enum TrueFalseDefault) – Determines if validators evaluate controls that are hidden or disabled
without using the Enabler property with a VisibleCondition and EnabledCondition.

When TrueFalseDefault.True, validators will not attempt to evaluate controls that are hidden or disabled.

When TrueFalseDefault.False, they will unless you establish the Enabler property with a VisibleCondition and
EnabledCondition.

When set to TrueFalseDefault.Default, the page uses this global setting: DefaultAutoDisableValidators.

 SubmitOrder (enum SubmitOrderType) – Determines the order of these three actions that occur when the page is
submitted:

o Validate the page.

o Show the Confirm messagebox when a ConfirmMessage property is used, either here in the PageManager or on
a DES button.

o Run the Custom Submit Function when the CustomSubmitFunctionName property is used.

When set to SubmitOrderType.ConfirmCustomValidate, the page uses this global setting:
DefaultSubmitOrder.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 24 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 CustomSubmitFunctionName (string) – The name of a client-side function that is called when the page is submitted for
validation. It allows you to extend the submission logic.

The function must take one parameter, the group name, which is a string. It must return a Boolean value where true
means continue and false means stop. See this property in the Validation User's Guide for an example.

The function is run amongst three actions: validation, confirm message, and custom submit function in the order
determined by SubmitOrder.

Define the name of the function in this property. If "", no function is defined.

It defaults to "". There is no global setting for this property.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

 PostValidationUpdateScript (string) – JavaScript code that will be executed each time validation occurs on the client-
side. It will run after validation is applied. One use is to relocate absolute positioned elements after validator error
messages have caused the page to reposition non-absolute position elements.

You can enter any JavaScript statements you want into this string. Your string will be executed by using the JavaScript
eval() function. This function may be called even if nothing visually changed on the page.

When "", this feature is not used.

It defaults to "". There is no global setting for this property.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 25 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Interactive Pages Properties
These properties are features of the Peter’s Interactive Pages module.

The Properties Editor shows these properties under the category “Interactive Pages”.

Alert: These properties are only available when you have a license covering Peter’s Interactive Pages.

 HintManager (HintManager) – The PeterBlum.DES.HintManager class is used by the Interactive Hints system to
define the formatting and behavior of hints and tooltips. See “Interactive Hints” in the Interactive Pages User’s
Guide.

Use its properties to:

o Define shared HintFormatters. Each defines how a hint appears on the page. They have a name which is
assigned to individual controls in their SharedHintFormatterName property.

o Determine if validator errors are merged into the hints.

o Switch from standard HTML tooltips to DES’s PopupViews.

ASP.NET Declarative Syntax

<des:PageManager HintManager-PropertyName="value" />

 ChangeMonitor (ChangeMonitor) – The PeterBlum.DES.ChangeMonitor class is used by the Change Monitor
system to enable it and define its behavior. See “Change Monitor” in the Interactive Pages User’s Guide.

ASP.NET Declarative Syntax

<des:PageManager ChangeMonitor-PropertyName="value" />

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 26 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

TextBoxes Properties
These properties are used by textboxes in Peter’s TextBoxes and Peter’s Date and Time modules.

The Properties Editor shows these properties under the category “Interactive Pages”.

Alert: These properties are only available when you have a license covering Peter’s TextBoxes or Peter’s Date and Time.

 SpinnerManager (SpinnerManager) – The PeterBlum.DES.SpinnerManager class is used by textboxes that
offer spinners including TimeOfDayTextBox, DurationTextBox, and all numeric textboxes of Peter’s TextBoxes. See
“SpinnerManager Property”.

ASP.NET Declarative Syntax

<des:PageManager SpinnerManager-PropertyName="value" />

 ValueWhenBlankMode (enum ValueWhenBlankMode) – Used by TextBoxes to determine how setting and removing
the focus updates the textbox if its value is considered blank. It may restore the text value to "" and change the style sheet
class to its original value.

Use the ValueWhenBlank property on TextBoxes to establish the text for when it is blank.

When set to ValueWhenBlankMode.RemoveBoth, the page uses this global setting:
DefaultValueWhenBlankMode.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 27 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Miscelleneous Properties
The Properties Editor shows these properties under the category “Misc”.

 EnableButtonImageEffects (enum EnableButtonImageEffects) – Many buttons can show up to 3 images: normal,
pressed, and mouseover. You only need to specify the name of the normal image and provide two more with the same
name + “pressed” and “mouseover”. DES will “sniff” your local folder to detect these files. It’s sniffing cannot see all
possible URLs, including those starting with “http://”. Use this property to override the sniffer. See the
PeterBlum.DES.Globals.Page.EnableButtonEffects property.

 SetFocusFunctionName (string) – The name of a client-side function that is called when DES sets focus to a field. It
allows you to modify or replace the set focus logic, particularly to show an invisible control. See the
PeterBlum.DES.Globals.Page.SetFocusFunctionName property.

 ViewStateMgr (PeterBlum.DES.ViewStateMgr) – Enhances the ViewState on this control to provide more optimal
storage and other benefits. Normally, the properties of this control and its segments are not preserved in the ViewState.
Just call ViewStateMgr.TrackProperty("propertyname") to record the property in the ViewState.

For more details, see “The ViewState and Preserving Properties for PostBack”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 28 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

NativeControlExtender Control
While DES provides enhanced versions of the TextBox, Button, LinkButton, and ImageButton, you may want to continue
using the native ASP.NET versions of these controls on your page. The NativeControlExtender lets you add some DES
features to the native controls. It also extends controls for which DES has no equivalent.

Note: Switching from native to DES versions of controls is very easy and is probably worth doing, so you don’t have two
controls instead of one, for each button and textbox. Run the Web Application Updater to Convert Native controls on any
page or throughout your web application. See the Installation Guide.

Click on any of these topics to jump to them:

 Features

 Using the NativeControlExtender

 Adding Hints

 Switching to Enhanced ToolTips

 Extending Buttons, LinkButtons, and ImageButtons

 Extending BulletedList, Menu, and TreeView

 Attach the ChangeMonitor

 Provide DES Validation on AutoPostBack

 Intercept the ENTER key to click a button

 Extend TextBoxes to use DES’s SmartChange Feature

 Adding the NativeControlExtender

 NativeControlExtender Properties

Features
 Apply the Interactive Hints system to almost any control. For controls that allow

focus, show a Hint on a PopupView or Label. For most, switch from the standard
tooltip to a PopupView (shown to the right).

 Extend Buttons, LinkButtons, and ImageButtons, with these DES features:

o DES Validation

o Disable On Submit

o ConfirmMessage

 Extend these controls which can submit the page to offer client-side DES validation and ConfirmMessages:

o BulletedList when DisplayMode = LinkButton.

o Menu for selected menu items

o TreeView for TreeNodes with a SelectAction of Select or SelectExpand. ConfirmMessages are not
offered on this control.

 ChangeMonitor monitors edits on controls that support client-side onchange and onclick events.

 Provide DES validation on AutoPostBack.

 Intercept the ENTER key and use it to click a button.

 Extend TextBoxes with DES’s SmartChange feature that fires the client-side onchange event in cases where it would be
expected but doesn’t happen: after using the AutoComplete menu and after a programmatic edit.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 29 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the NativeControlExtender
It’s easy to use the NativeControlExtender. Assign the ControlIDToExtend property to the ID of the control that you need to
extend. Then set the desired properties.

Click on any of these topics to jump to them:

 Adding Hints

 Switching to Enhanced ToolTips

 Extending Buttons, LinkButtons, and ImageButtons

 Extending BulletedList, Menu, and TreeView

 Attach the ChangeMonitor

 Provide DES Validation on AutoPostBack

 Intercept the ENTER key to click a button

 Extend TextBoxes to use DES’s SmartChange Feature

Adding Hints
Note: The terms “Hint” and “ToolTip” both describe ways to provide documentation to the user. A Hint displays the message
when focus enters the field and is best for data entry controls. A ToolTip displays the message when the mouse points to the
control. It can be used on almost any type of control.

Use hints with controls that support the client-side onfocus and onblur events. This includes these HTML form tags: <input>,
<select>, and <textarea>. Their ASP.NET control equivalents are TextBoxes, CheckBoxes, RadioButtons, DropDownLists,
and ListBoxes. It may work with some third party controls too (you will have to try it to see).

See the “Interactive Hints” section of the Interactive Pages User’s Guide for details.

Assign your hint text to the Hint property. If you are using the same text in the ToolTip property, you do not need to assign
anything to Hint. It uses the ToolTip property when Hint is "" unless you set the HintManager.ToolTipsAsHints property
to False.

If you are using a PopupView, it optionally offers a Help button which can show additional text. That additional text is
assigned to the HintHelp property. HintHelp can be used for other purposes, as determined by the
PopupView.HelpBehavior property. See the “Defining PopupViews” section of the Interactive Pages User’s Guide.

The format of hints is determined by a HintFormatter object. You can either define one specific to this control in the
LocalHintFormatter property or specify the name of one shared by other controls in the SharedHintFormatterName
property. The HintFormatter determines where the hint is shown:

 PopupView or Label. A PopupView is similar to a ToolTip, created with HTML and JavaScript to float near the control.
It can be dragged and closed. It can be customized with style sheets, images, and settings using the Global Settings
Editor.

 In a tooltip

 In the browser’s status bar

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 30 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Switching to Enhanced ToolTips
When you have a license for the Interactive Pages module, you can replace the browser’s ToolTips with DES’s Enhanced
ToolTips, as described in the “Enhanced ToolTips” section of the Interactive Pages User’s Guide.

Note: The terms “Hint” and “ToolTip” both describe ways to provide documentation to the user. A Hint displays the message
when focus enters the field and is best for data entry controls. A ToolTip displays the message when the mouse points to the
control. It can be used on almost any type of control.

When you set PeterBlum.DES.Globals.Page.HintManager.EnableToolTipsUsePopupViews or
PageManager.HintManager.EnableToolTipsUsePopupViews to True, any of DES’s controls that have a ToolTip or Hint
defined will show a ToolTip with a PopupView. This can be applied to non-DES controls too.

Just assign a NativeControlExtender to the control and use the ToolTip property either on your non-DES control or the
NativeControlExtender. If you are already using the Hint property, it can be used as the text of a ToolTip unless you want its
text to be different.

The PopupView’s appearance is defined with settings established in the “PopupView definitions used by HintFormatters”
section of the Global Settings Editor. In the Global Settings Editor, you define a PopupView and give it a name. There
are several predefined PopupViews with different colors and widths. See “Defining PopupViews” in the Interactive Pages
User’s Guide.

You can establish the PopupView used on a ToolTip by specifying its name in the ToolTipUsesPopupViewName property of
the NativeControlExtender. If it is set to “{DEFAULT}”, it uses the value from the DefaultToolTipPopupViewName
property of the “HintManager Defaults” topic of the Global Setting Editor.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 31 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Extending Buttons, LinkButtons, and ImageButtons
DES’s Buttons have several extensions: support for DES Validation, disable on submit, enabled by the ChangeMonitor,
showing a confirm message, and handling a click when the button moves from under the mouse. While it is easier to just
switch a page from the native buttons to DES buttons (use the Web Application Updater), the same features are found in the
NativeControlExtender.

Validation Using the DES Validation Framework

Simply by attaching the NativeControlExtender, your button is set up for client-side validation using the DES Validation
Framework. The NativeControlExtender will respect your button’s CausesValidation property and not set up validation if it
is false. It will also use the ValidationGroup property from your button. Alternatively, you can set up a validation group
name in the NativeControlExtender’s Group property.

Unlike with the Native Validation Framework, you can use the group name “*” to validate ALL groups. When the button is
shown on multiple rows (naming containers) of a GridView or Repeater, you can make each row have a unique group name
by adding a plus (+) character as the first character of the group name.

Server Side Validation

You must still set up server side validation on any submit control that should validate. Your button’s Click or Command
event handler method should look like this:

[C#]

protected void ControlName_Click(object sender, System.EventArgs e)
{
 PeterBlum.DES.Globals.Page.Validate("validation group name");
 if (PeterBlum.DES.Globals.Page.IsValid)
 {
 // code to save or use the data
 }
}

[VB]

Protected Sub ControlName_Click(ByVal sender As object, ByVal e As System.EventArgs)
 PeterBlum.DES.Globals.Page.Validate("validation group name")
 If PeterBlum.DES.Globals.Page.IsValid Then
 ' code to save or use the data
 End If
End Sub

Other Properties

 ConfirmMessage is the text of a confirmation message shown when the button is pressed.

 DisableOnSubmit will disable the button after it is clicked to reduce the chance of extra page submissions.

 MayMoveOnClick resolves an issue where the button may jump just as the user attempts to click it, requiring a second
click. This often happens after editing a field that has a validator error and the user immediately clicks on the button.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 32 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Extending BulletedList, Menu, and TreeView
The BulletedList, Menu, and TreeView controls all can post back. If you want them to run client-side validation and
optionally display a confirmation message prior to posting back, use a NativeControlExtender.

Click on any of these topics to jump to them:

 BulletedList

 Menu

 TreeView

BulletedList

The BulletedList can submit the page when its DisplayMode property is set to LinkButton. The NativeControlExtender
will use the CausesValidation and ValidationGroup properties already on the BulletedList to establish client-side validation.
You must still set up server side validation in its postback event handler method. See “Server Side Validation”.

Set the ConfirmMessage property if you want a confirmation message prior to submitting the page.

Menu

Only applies to the System.Web.UI.WebControls.Menu

Menus can post back. Client-side validation may be appropriate for some commands. You mark those commands by assigning
the “{SUBMIT}” token into their NavigateUrl property.

The “{SUBMIT}” token takes additional parameters to define the validation group and elect to use the ConfirmMessage. The
parameters are in this colon delimited format:

{SUBMIT:group=[validationgroupname]:confirm}

When :group= is defined, validation is used with the validation group name specified. It supports a single group name or
“*”. For the blank group name, just use group=.

When :confirm is used, show the confirm message supplied to this function. If validation is also used, the confirm message
will appear in the order determined by PeterBlum.DES.Globals.Page.SubmitOrder or PageManager.SubmitOrder.

<asp:Menu ID="Menu1" runat="server" OnMenuItemClick="Menu1_MenuItemClick">
 <Items>
 <asp:MenuItem Text="Confirm and validate" Value="Confirm and validate"
 NavigateUrl="{SUBMIT:group=:confirm}"></asp:MenuItem>
 <asp:MenuItem Text="Confirm" Value="Confirm"
 NavigateUrl="{SUBMIT:confirm}"></asp:MenuItem>
 <asp:MenuItem Text="New Item3" Value="New Item3">
 <asp:MenuItem Text="Validate group 1" Value="New Item 3.1"
 NavigateUrl="{SUBMIT:group=group1}"></asp:MenuItem>
 <asp:MenuItem Text="Validate group 1 and confirm" Value="New Item 3.2"
 NavigateUrl="{SUBMIT:group=group1:confirm}"></asp:MenuItem>
 <asp:MenuItem Text="Nothing" Value="Nothing" ></asp:MenuItem>
 </asp:MenuItem>
 </Items>
</asp:Menu>

You must still set up server side validation in its postback event handler method. See “Server Side Validation”.

TreeView

Only applies to the System.Web.UI.WebControls.TreeView

The TreeView can provide client-side validation (but no confirm message) on any TreeNode with a SelectAction of Select
or SelectExpand. It uses the validation group name defined in the Group property.

You must still set up server side validation in its postback event handler method. See “Server Side Validation”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 33 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Attach the ChangeMonitor
The ChangeMonitor watches for edits on the page and changes the enabled state of buttons after an edit is detected. See
“ChangeMonitor” in the Interactive Pages User’s Guide.

When the ChangeMonitor is enabled, data entry controls assigned to the NativeControlExtender will notify the
ChangeMonitor when they are changed. This supports the native controls and those third party controls defined in the
<ThirdPartyControl> section of the custom.des.config file as described in the Installation Guide.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 34 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Provide DES Validation on AutoPostBack
Many controls offer the AutoPostBack property to post back when they are changed. Sometimes you want to provide client-
side validation and block the postback when there is an error. You can use the NativeControlExtender to not only install
support for DES’s Validation Framework, but also to preserve the focus position after postback is completed.

Set the non-DES control’s AutoPostBack property to true and attach the NativeControlExtender.

Determine what you want to validate with the AutoPostBackValidates property:

 When set to Control, it validates all validators attached to your control.

 When set to ValidationGroup, it validates based on the validation group supplied. Define the validation group name
in either the control’s ValidationGroup property or NativeControlExtender’s Group property. It supports the group
name “*” to evaluate all validation groups and the “+” character in front of the group name for controls repeated in
naming containers.

If you want to preserve focus, set AutoPostBackTracksFocus to true. Not available in ASP.NET 1.x. You can track focus
even when AutoPostBackValidates is set to No.

Overcoming a bug in Google Chrome 1

When a DropDownList has AutoPostBack set to true and you assign a DES validator to that DropDownList, Google
Chrome v1 will generate a JavaScript error. Use the NativeControlExtender to avoid this. Add it to any DropDownList whose
AutoPostBack property is set to true and has validators.

Internally the NativeControlExtender swaps the original AutoPostBack scripts with alternatives that work with all browsers.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 35 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Intercept the ENTER key to click a button
If you want to direct the ENTER key to click a button, assign a control where typing will occur and set the
EnterSubmitsControlID property to the button’s ID. You can select an actual data entry control or a containing control, like
a Panel. The containing control will capture the ENTER key for all controls it contains. The contain control must generate an
HTML tag that supports the onkeypress event.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 36 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Extend TextBoxes to use DES’s SmartChange Feature
DES’s SmartChange feature assures you that a textbox will fire its client-side onchange event even when the browser
normally would not. The onchange event is very important in data entry. It updates validators, notifies the ChangeMonitor,
and tells the control to reformat its contents.

The browser will not fire this event when you pick from the AutoComplete list to edit the control. If you write JavaScript to
change the control while focus is in the control, that change will not be detected either. Both are addressed by the
SmartChange feature.

To use it, simply attach the NativeControlExtender to your textbox. There are no additional settings.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 37 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding the NativeControlExtender
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a Page for DES Controls”. It covers issues like style sheets, AJAX,
and localization.

2. Add a NativeControlExtender control to the page. Since it does not add any HTML to the page, it can be anywhere.

Visual Studio and Visual Web Developer Users

Drag the NativeControlExtender control from the Toolbox onto your web form.

Text Entry Users

Add the control:

<des:NativeControlExtender id="[YourControlID]" runat="server" />

Programmatically creating the NativeControlExtender control

 Identify the control which you will add the NativeControlExtender control to its Controls collection. Like all
ASP.NET controls, the NativeControlExtender can be added to any control that supports child controls, like Panel,
User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location
and use the PlaceHolder.

 Create an instance of the NativeControlExtender control class. The constructor takes no parameters.

 Assign the ID property.

 Add the NativeControlExtender control to the Controls collection.

In this example, the NativeControlExtender is created with an ID of “NativeControlExtender1”. It is added to
PlaceHolder1.

[C#]

PeterBlum.DES.NativeControlExtender vNativeControlExtender =
 new PeterBlum.DES.NativeControlExtender();
vNativeControlExtender.ID = "NativeControlExtender1";
PlaceHolder1.Controls.Add(vNativeControlExtender);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

[VB]

Dim vNativeControlExtender As PeterBlum.DES.NativeControlExtender = _
 New PeterBlum.DES.NativeControlExtender()
vNativeControlExtender.ID = "NativeControlExtender1"
PlaceHolder1.Controls.Add(vNativeControlExtender)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

3. Assign the ControlIDToExtend property to the ID of the control you want to extend. If that control is not in the same or
a parent naming container, set it programmatically with the ControlToExtend property.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 38 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. The SmartTag also offers
some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

4. Set other properties to extend your control. See “NativeControlExtender Properties”.

Notable Properties

The “Using the NativeControlExtender” section provides details on these properties.

 Adding Hints

 Switching to Enhanced ToolTips

 Extending Buttons, LinkButtons, and ImageButtons

 Extending BulletedList, Menu, and TreeView

 Attach the ChangeMonitor

 Provide DES Validation on AutoPostBack

 Intercept the ENTER key to click a button

 Extend TextBoxes to use DES’s SmartChange Feature

5. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. See “Using These
Controls with AJAX”.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack”.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 39 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

NativeControlExtender Properties
The NativeControlExtender is subclassed from System.Web.UI.Control. It adds no HTML of its own to the page.

Click on any of these topics to jump to them:

 Control to Extend Properties

 Submit the Page Properties

 Hint Properties

 ToolTip Properties

 Behavior Properties

Control to Extend Properties
The Properties Editor shows these properties in the “Control To Extend” category.

 ControlIDToExtend (string) – The ID to the control to be extended. Either it or ControlToExtend must be assigned. Use
ControlToExtend when the control is not in the same or a parent naming container with the NativeControlExtender. It
accepts the ID of nearly any native ASP.NET control that generates HTML. See “Using the NativeControlExtender” for
recommendations on the controls to use with the NativeControlExtender.

 ControlToExtend (Control) – A reference to the control to be extended. It is an alternative to ControlIDToExtend that
allows the control to be anywhere on the page instead of the same naming container as the Calendar control. You must
assign it programmatically.

When assigned, it overrides the value of ControlIDToExtend.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 40 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Submit the Page Properties
The Properties Editor shows these properties in the “Submit The Page” category.

 Group (string) – Determines which validators are invoked when the Control To Extend control attempts to submit the
page. Only supported when using the DES Validation Framework.

When Control To Extend already has its own ValidationGroup property, such as a Button, the value of
ValidationGroup will be used when this property is blank. When Group is assigned, it always overrides the
ValidationGroup property.

Do not use this with the ChangeMonitor. Set up ChangeMonitor group names in the ChangeMonitorGroups property.

The validators whose Group property matches this value will be evaluated.

Group names are blank by default. When left blank, this runs all validators whose Group property is "".

You can also use the string “*” to run every validator on the page.

When the button is shown on multiple rows (naming containers) of a GridView or Repeater, you can make each row have
a unique group name by adding a plus (+) character as the first character of the group name. Just be sure to use an
identical name in the validators associated with this button.

It defaults to "".

 AutoPostBackValidates (enum PeterBlum.DES.AutoPostBackValidates) – When Control To Extend has its
AutoPostBack property set to true, this determines if autopostback will first run client-side validation before posting
back. If there is validation error, it does not post back. Only supported when using the DES Validation Framework.

Requirements: The Control To Extend must have an AutoPostBack property for this feature to be applied.

DES can either validate the control itself or all validators in the validation group defined by the Group property.

It does not provide any server side validation. The idea is to avoid a round trip when the data entered is meaningless. Yet,
you should act defensively to protect against hacking attempts by using the PageSecurityValidator or otherwise detecting
illegal data passed by the controls on the page so it cannot be used in SQL statements.

If client-side validation is not set up, AutoPostBack does it normal processing without client-side validation.

In ASP.NET 2.0 and higher, the Control To Extend may have a CausesValidation property. It is not used. The value
AutoPostBackValidates.ValidationGroup is its replacement.

The enumerated type PeterBlum.DES.AutoPostBackValidates has these values:

o No - AutoPostBack does not validate. Postback always occurs.

o Control - AutoPostBack runs all validators associated with the Control To Extend.

o ValidationGroup - AutoPostBack runs all validators associated with the validation group. The validation
group name is specified in the Group property.

It defaults to AutoPostBackValidates.Control.

Alert: This property requires a license that covers the Peter’s Professional Validation module.

 AutoPostBackTracksFocus (Boolean) – In ASP.NET 2.0 and higher. When Control To Extend has its AutoPostBack
property set to true, this allows some browsers to set the focus to the control that last had focus. The control may either
be the Control To Extend or the control the user has moved the focus to which invoked autopostback.

Requirements: The Control To Extend must have an AutoPostBack property for this feature to be applied.

When true, it restores focus back to this control after auto post back completes.

When false, it does not affect focus.

It defaults to false.

Alert: This property requires a license that covers the Peter’s Professional Validation module.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 41 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 ConfirmMessage (string) – Provides a confirmation message to controls that submit the page, including Button,
LinkButton, ImageButton, BulletedList (when DisplayMode = LinkButton), and Menu (for MenuItems with
NavigateUrl = “{SUBMIT:confirm}”).

When using the DES Validation Framework and the Control to Extend runs the validators (its CausesValidation property
is true), there is a default confirmation message that is used when this property is blank. The default is
PeterBlum.DES.Globals.Page.ConfirmMessage or PageManager.ConfirmMessage.

A confirmation message uses the JavaScript confirm() function to display the text of this property. It offers a Yes and
No button. When No is clicked, the control will not post back.

It defaults to "".

Alert: This property requires a license that covers the Peter’s Interactive Pages module.

 ConfirmMessageLookupID (string) – Gets the value for ConfirmMessage through the String Lookup System. (See
“The String Lookup System”.) The LookupID and its value should be defined within the String Group of Confirm. If no
match is found OR this is blank, ConfirmMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Alert: This property requires a license that covers the Peter’s Interactive Pages module.

 DisableOnSubmit (Boolean) – When true and Control To Extend is a Button, LinkButton, or ImageButton, the control
will be disabled after the page submits.

When true, the control will disable on submit. If the button is set up for AJAX, it will be re-enabled when the AJAX
callback completes. If using an ImageButton, DES will apply an opaque style to give the image a dimmed effect.

It defaults to false.

Alert: This property requires a license that covers the Peter’s Interactive Pages module.

 MayMoveOnClick (Boolean) – When the Control To Extend is a Button, LinkButton, or ImageButton and it requires an
extra click to submit the page, it is because it moved as the user clicks on it. Set this to true to avoid that extra click.
Only supported when using the DES Validation Framework.

This solves the following problem:

When the user edits a control and immediately clicks on the button, the onchange event of the control fires, running
validation. If validation removes error message and/or the ValidationSummary, the button may move. This happens
before the button's onclick event, preventing that onclick event to run because the mouse button is no longer on the
button.

It defaults to false.

 EnterSubmitsControlID (string) – Use this when you want the ENTER key to click a specific button. The browser
already has rules for clicking a button when you type ENTER. That button usually has a special frame to identify it to the
user. This property will override those rules. Here are cases where you will use EnterSubmitsControlID:

o Suppose that you have two groups of fields, each with its own submit button. Each field should use this to point
to its own submit button.

o Internet Explorer for Windows has the following strange behavior: if you have only one data entry control,
Internet Explorer submits the page without clicking the button first, causing it to skip any client-side validation.

Assign the ID of the submit control. It must be assigned to a control in the same or a parent naming container. If the
control is in another naming container, use EnterSubmitsControl.

The Control To Extend can either but a specific data entry control, like a textbox, or a container of controls, like a Panel.
When using a container, it captures the ENTER key for all controls it contains. Note that the container must generate an
HTML tag that supports the client-side onkeypress event.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 42 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

This feature fires the click() method on the client-side control. click() automatically runs the control’s client-side
onclick event. In the case of a submit control, it submits the page after firing client-side validation. There are a lot of
controls that support click(), although they vary by browser. In addition to Buttons and ImageButtons, typical cases
are hyperlinks, LinkButtons, checkboxes and radiobuttons. However, browsers don’t all support the click() method on
the same control. Here are the differences:

o Internet Explorer and Opera 7 support it on hyperlinks (and LinkButton) while Mozilla and Safari do not.

o All support checkboxes and radiobuttons. However, Mozilla always removes the focus from the current field
even if you don’t set this feature up to move the focus (the focus is gone, not moved)

o All support Buttons the same way. This is the best choice for a control to click.

It defaults to "".

Alert: This property requires a license that covers the Peter’s Interactive Pages module.

 EnterSubmitsControl (System.Web.UI.Control) – This is an alternative to EnablerSubmitsControlID. It has the same
features as EnablerSubmitsControlID. It is assigned a reference to a control instead of an ID. As a result, it supports
controls in any naming container. It must be assigned programmatically.

When programmatically assigning properties to the NativeControlExtender, if you have access to the submit control
object, it is better to assign it here than assign its ID to the EnablerSubmitsControlID property because DES operates
faster using EnablerSubmitsControl.

Alert: This property requires a license that covers the Peter’s Interactive Pages module.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 43 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Hint Properties
See the “Interactive Hints” section of the Interactive Pages User’s Guide for details on Hints.

The Properties Editor shows these properties in the “Hint” category.

Alert: These properties requires a license that covers the Peter’s Interactive Pages module.

 Hint (string) – When using the Interactive Hints system, this is the text of the hint.

When blank, if the Control To Extend is using its ToolTip property, the ToolTip is used as the text of the hint unless you
set the HintManager.ToolTipsAsHints property to False or the ToolTipUsesPopupViewName property is used. In
addition, the Control To Extend must be a data entry control. See the HintManager.ToolTipsAsHint property in the
Interactive Pages User’s Guide for details

HTML tags are permitted. ENTER and LINEFEED characters are not. Use the token “{NEWLINE}” where you need a
linefeed.

When the hint is shown in the browser's status bar, HTML tags will automatically be stripped.

It defaults to "".

 HintLookupID (string) – Gets the value for Hint through the String Lookup System. (See “The String Lookup
System”.) The LookupID and its value should be defined within the String Group of Hint. If no match is found OR this is
blank, Hint will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HintHelp (string) – When the Hint uses a PopupView, this provides data for use by the Help Button and other features on
the PopupView. Its use depends on the PopupView.HelpBehavior property. (The PopupView is determined by the
HintFormatter with its PopupViewName property.)

The PopupView has an optional Help button. When setup, the user can click it to bring up additional information, such as
a new page of help text.

Here is how to use the HintHelp based on PopupView.HelpBehavior:

o None - Do not show a Help Button. The HintHelp property is not used.

o ButtonAppends - Add the text from HintHelp after the existing message. Use
PopupView.AppendHelpSeparator to separate the two parts. When clicked, the Help button disappears and the
message box is redrawn.

o ButtonReplaces - Replace the text in the message with the HintHelp. When clicked, the Help button
disappears and the message box is redrawn.

o Title - The text appears in the header as the title. It replaces the PopupView.HeaderText. There is no Help
Button. If HintHelp is blank, PopupView.HeaderText is used.

o Hyperlink - Provide a Hyperlink. The Help Info text will appear in the "{0}" token of
PopupView.HyperlinkUrlForHelpButton.

For example, the HyperlinkUrlForHelpButton property may be "{0}" and this property is the complete URL
"/helpfiles/helptopic1000.aspx".

Another example uses the token for just a querystring parameter, like this: HyperlinkUrlForHelpButton =
"/gethelp.aspx?topicid={0}" and this property contains the number of the ID.

o HyperlinkNewWindow - Provide a Hyperlink that opens a new window. The HintHelp text will appear in
the “{0}” token of PopupView.HyperlinkUrlForHelpButton.

o ButtonRunsScript - Runs the script supplied in PopupView.ScriptForHelpButton. The HintHelp text
will replace the token “{0}” in that script.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 44 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

This defaults to "".

 HintHelpLookupID (string) – Gets the value for HintHelp through the String Lookup System. (See “The String
Lookup System”.) The LookupID and its value should be defined within the String Group of Hint. If no match is found
OR this is blank, HintHelp will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 SharedHintFormatterName (string) – Specify the name of the desired HintFormatter object found in
HintManager.SharedHintFormatters. (HintManager is accessed programmatically through
PeterBlum.DES.Globals.Page and in the PageManager control.) Alternatively, specify the name of a PopupView
defined in the “PopupView definitions used by HintFormatters” of the Global Settings Editor.

The PeterBlum.DES.HintFormatter class describes how the hint text will be displayed. It provides its name,
display mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more.

The HintManager.SharedHintFormatters property defines various ways to display a hint with
PeterBlum.DES.HintFormatter objects. It lets you share a HintFormatter definition amongst controls on this
page. It not only makes changes to the HintFormatter quick, but it also reduces the JavaScript output. If you want to
create a HintFormatter specific to this control, set SharedHintFormatterName to "" and edit the properties of
LocalHintFormatter (see below).

If you specify the name of a PopupView and there is a definition with that name, a HintFormatter is automatically added
to HintManager.SharedHintFormatters with its name matching the name of the PopupView. This is an easy way to
work with PopupViews without the extra step of setting up HintFormatters. The HintFormatter defined will also show the
hint as a tooltip but it will not show the hint in the status bar. If you need more control over the HintFormatter’s
properties, you must create the HintFormatter yourself.

See the “Interactive Hints” section of the Interactive Pages User’s Guide for details on the
PeterBlum.DES.HintFormatter class and setting up HintManager.SharedHintFormatters.

Use the token "{DEFAULT}" to get the name from the global setting DefaultSharedHintFormatterName, which is set
in the Global Settings Editor.

It defaults to “{DEFAULT}”.

 LocalHintFormatter (PeterBlum.DES.HintFormatter) – When none of the HintFormatter objects defined in
HintManager.SharedHintFormatters is appropriate, use this property. (HintManager is accessed programmatically
through PeterBlum.DES.Globals.Page and in the PageManager control.)

The PeterBlum.DES.HintFormatter class describes how the hint text will be displayed. It provides its display
mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more. See the “Interactive Hints”
section of the Interactive Pages User’s Guide for directions on using the PeterBlum.DES.HintFormatter
class.

You must set SharedHintFormatterName to "" for this to be used.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 45 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

ToolTip Properties
The Properties Editor shows these properties in the “Hint” category.

Alert: These properties require a license that covers the Peter’s Interactive Pages module.

 ToolTip (string) – Provides a tooltip for the Control to Extend. It can be used as a traditional tooltip or an Enhanced
ToolTip by using ToolTipUsesPopupViewName and setting HintManager.EnableToolTipsUsePopupViews to True.
(HintManager is accessed programmatically through PeterBlum.DES.Globals.Page and in the PageManager control.)

The Control to Extend may have its own ToolTip property. If it does, its value will be used when this is blank. If this is
assigned it always overrides the ToolTip property on Control To Extend. In addition, you can use the String Lookup
System to get the tooltip through ToolTipLookupID.

It defaults to "".

 ToolTipLookupID (string) – Gets the value for ToolTip through the String Lookup System. (See “The String Lookup
System”.) The LookupID and its value should be defined within the String Group of Hint. If no match is found OR this is
blank, ToolTip will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 ToolTipUsesPopupViewName (string) – When using the “Enhanced ToolTips” feature, this determines which
PopupView definition is used. For details on Enhanced ToolTips, see the Interactive Pages User’s Guide.

Specify the name from the PopupView definition or use the token “{DEFAULT}” to select the name from the global
setting DefaultToolTipPopupViewName, which is set with the Global Settings Editor.

A PopupView definition describes the name, style sheets, images, behaviors and size of a PopupView. Use the Global
Settings Editor to create and edit these PopupView definitions in the “PopupView definitions used by the HintManager”
section.

Tooltips are only converted to PopupViews when HintManager.EnableToolTipsUsePopupViews is True.
(HintManager is accessed programmatically through PeterBlum.DES.Globals.Page and in the PageManager control.)

Here are the predefined values: LtYellow-Small, LtYellow-Medium, LtYellow-Large, ToolTip-Small,
ToolTip-Medium, and ToolTip-Large. All of these are light yellow. Their widths vary from 200px to 600px.
Those named “ToolTip” have the callout feature disabled. Those named “LtYellow” have the callout feature enabled.

It defaults to “{DEFAULT}”.

Note: When the name is unknown, it also uses the factory default. This allows the software to operate even if a
PopupView definition is deleted or renamed.

Note: When the HintManager.ToolTipsAsHints feature is enabled, anything other than “” or “{DEFAULT}” assigned to
ToolTipUsesPopupViewName will prevent the ToolTip text from being assigned as a Hint. You must explicitly assign the
Hint text if you want the tooltip and hint to share the same text.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 46 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Behavior Properties
The Properties Editor shows these properties in the “Behavior” category.

 Enabled (Boolean) – Determines if the control is used or not. When true, it is used. It defaults to true.

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX”. It defaults to false.

 ChangeMonitorEnables (enum PeterBlum.DES.ChangeMonitorEnablesSubmitControl) – Used when the Control To
Extend is a Button, LinkButton, or ImageButton. It determines if the button’s state is affected by the ChangeMonitor.
When the ChangeMonitor, the button is disabled as the page is loaded. After the first edit, it becomes enabled.

The enumerated type PeterBlum.DES.ChangeMonitorEnablesSubmitControl has these values:

o No - The button will not change its enable state.

o Yes - The button will change its enabled state.

o CausesValidationIsTrue - When the button's CausesValidation property is true, it will change its
enabled state.

o CausesValidationIsFalse - When the button's CausesValidation property is false, it will change its
enabled state.

It defaults to ChangeMonitorEnablesSubmitControl.CausesValidationIsTrue.

Alert: This property requires a license that covers the Peter’s Interactive Pages module.

 ChangeMonitorGroups (string) – When using the ChangeMonitor, the group name(s) defined here is marked changed
when the Control To Extend is edited. See “ChangeMonitor” in the Interactive Pages User’s Guide.

If you have Validators evaluating the Control To Extend, those Validators already have a Group property which is used
by the ChangeMonitor unless ChangeMonitor.UseValidationGroups is false. (ChangeMonitor is accessed
programmatically through PeterBlum.DES.Globals.Page and in the PageManager control.)

Unless the validators do not specify the desired group, you can leave this blank.

The ChangeMonitor is enabled when ChangeMonitor.Enabled to True or the global setting
DefaultChangeMonitorEnabled is True in the Global Settings Editor.

The value of "" is a valid group name.

For a list of group names, use the pipe character as a delimiter. For example: "GroupName1|GroupName2". If one of the
groups has the name "", start this string with the pipe character: "|GroupName2".

Use "*" to indicate all groups apply.

It defaults to "".

Alert: This property requires a license that covers the Peter’s Interactive Pages module.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 47 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

The LocalizableLabel Control
The PeterBlum.DES.LocalizableLabel control is a child of the System.Web.UI.WebControls.Label class.
It extends the Label class with support for string lookup and localization. DES provides the “String Lookup System” where
you can define the source of localized strings to be from .resx files, a database or another data source.

Use this control when building a web page that supports multiple languages. Often users develop separate pages, each with the
text adjusted for the desired language. Other users prefer to have smart controls that change their own appearance.
LocalizableLabel can handle all text on the page. Yet, there is more to text localization. Here are several issues in making a
page localizable.

 Often text on the page was typed directly into the HTML. This text must now be placed into ASP.NET controls,
specifically the LocalizableLabel.

 Each language uses a different number of characters in the translation of your original text. Some will be much wider
than the original. While HTML will widen the page or word-wrap the text as it grows, the layout of your page may
no longer have a desirable appearance.

The DES’s String Lookup System can be made to use the data of various localization software products. You supply an event
handler that handles a data lookup from the datasource of the localization software you are using. See “The String Lookup
System”.

Click on any of these topics to jump to them:

 Using the LocalizableLabel Control

 Adding the LocalizableLabel Control

 Properties of the LocalizableLabel Control

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 48 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the LocalizableLabel Control
The System.Web.UI.WebControls.Label is normally set up by defining text in the Text property or like this:

<asp:Label id=Label1 runat="server">Text goes here</asp:Label>

When you use the LocalizableLabel, the Text property remains and you use it for the default text. In addition, you assign a
lookup ID to the TextLookupID property. The lookup ID identifies the string within your datasource of localized strings. See
“The String Lookup System” for details.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 49 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding the LocalizableLabel Control

Visual Studio and VWD Design Mode Users

 Drag the LocalizableLabel control from the Toolbox onto your web form.

 Assign the Text and TextLookupID properties in the Properties Editor.

Text Entry Users

 In the <form> area, add the control itself:

<des:LocalizableLabel id="[YourControlID]" runat="server" >
</des:LocalizableLabel>

 Add the default text between open and closing tags.

<des:LocalizableLabel id=LocalizableLabel1 runat="server">
 text here</des:LocalizableLabel>

 Add the TextLookupID property.

<des:LocalizableLabel id=LocalizableLabel1 runat="server"
 TextLookupID="lookupid" >
 text here</des:LocalizableLabel>

Programmatically Creating the Control

 Identify the control which you will add the LocalizableLabel control to its Controls collection. Like all ASP.NET
controls, the LocalizableLabel can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

 Create an instance of the LocalizableLabel control class. The constructor takes no parameters.

 Assign the ID property.

 Add the LocalizableLabel control to the Controls collection.

 Assign the Text and TextLookupID properties.

In this example, the LocalizableLabel is created with an ID of “LocalizableLabel1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.LocalizableLabel vLabel = new PeterBlum.DES.LocalizableLabel();
vLabel.ID = "LocalizableLabel1";
vLabel.Text = "value";
vLabel.TextLookupID = "lookupID";
PlaceHolder1.Controls.Add(vLabel);

[VB]

Dim vLabel As PeterBlum.DES.LocalizableLabel = _
 New PeterBlum.DES.LocalizableLabel()
vLabel.ID = "LocalizableLabel1"
vLabel.Text = "value"
vLabel.TextLookupID = "lookupID"
PlaceHolder1.Controls.Add(vLabel)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 50 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties of the LocalizableLabel Control
The LocalizableLabel control is subclassed from System.Web.UI.WebControls.Label. It inherits the properties,
methods and events of Label. See System.Web.UI.WebControls.Label for details.

 Text (string) – Inherited from System.Web.UI.WebControls.Label, it supplies the default text that is used when
the TextLookupID does not find a match in the datasource. If you can be assured of a match, you can leave this blank. It
supports HTML tags.

Reminder: If your page should follow the XHTML standard, make sure your tags conform to XHTML.

 TextLookupID (string) – Gets the value for Text through The String Lookup System. The LookupID and its value
should be defined within the String Group of Labels. If no match is found OR this is blank, Text will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 AssociatedControlID (string) – An ID to another control associated with this label.

Use the AssociatedControlID property to associate a Label control with another server control on a Web form. When a
Label control is associated with another server control, its attributes can be used to extend the functionality of the
associated control. You can use the Label control as a caption for another control, or you can set the tab index or hot key
for an associated control.

When the AssociatedControlID property is set, the Label control renders as an HTML label element, with the for
attribute set to the ID property of the associated control. You can set other attributes of the label element using the Label
properties. For example, you can use the Text and AccessKey properties to provide the caption and hot key for an
associated control.

Credit: Some of this text is adapted from Microsoft’s Help text on this property.

Use it when the Associated is in the same or any parent naming container. If assigned to an unknown controlID or one in
an incorrect naming container, an exception will be thrown at runtime.

It defaults to "".

 AssociatedControl (Control) – A reference to a Associated control. It is an alternative to AssociatedControlID that
allows the control to be anywhere on the page instead of the same naming container as the Label.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.label(vs.71).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 51 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Global Settings Editor and custom.DES.config File
DES lets you set a number of site-wide defaults using the Global Settings Editor application. See “Using the Global
Settings Editor”. These settings are stored in the custom.des.config file that every web application must have. By default,
this file is located in the [web application]\DES folder. A companion file, des.config, contains the factory global settings
and should not be edited.

When the web application first requests global data from the custom.des.config file, it loads the data into the global
objects PeterBlum.DES.Globals and PeterBlum.DES.StringLookup. Each value is assigned to a static/shared property,
usually with an identical name to the property shown in the Global Settings Editor. You can programmatically assign these
defaults within your Global.asax file. See “Programmatically Assigning Globals”.

Click on any of these topics to jump to them:

 Using the Global Settings Editor

 Debugging the Global Settings Editor Properties

 Programmatically Assigning Globals

 Adding Globals After Config Files Load

 DES.config and Custom.DES.config File

Using the Global Settings Editor
There are several ways to start the Global Settings Editor:

 From the SmartTag of the PageManager control in design mode.

 From the Start menu, select Peter’s Data Entry Suite. Then select Global Settings Editor.

 From the [DES installation folder] folder.

 If you are using Visual Studio, you can add it to your Tools menu using the External Tools command. Locate the
program in the [DES installation folder] folder.

Once launched, you select the custom.des.config file. Then click on the topics in the left view to reveal their properties.
When finished, click the Save button in the toolbar.

Note: If you edit the custom.DES.config file of a web application that has been started, the changes will have no effect. You
must restart your web application.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 52 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

While most sections display a Property Editor, the PopupView definitions used by PopupErrorFormatters and HintFormatters
work differently. These features allow you to add PopupView definitions. Each of these has a unique name that you use in the
PopupViewName properties on PopupErrorFormatters and HintFormatters.

 To add, click on the PopupView definitions heading and click the Add button.

 To delete, click on the PopupView name and click the Delete button.

 To rename, click on the PopupView name and click the Rename button.

 The PopupView editor does not show every available property. Click the Advanced button to see all properties.

Open and Save
Commands

Current file

Sections to
edit. Click to

view properties

PopupViews
allow adding
and deleting
within the list

Edit the
properties

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 53 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Debugging the Global Settings Editor Properties
If you are uncertain that the values set in the Global Settings Editor are loaded correctly, set up a special querystring
parameter, as described in the “Exploring The Current Settings”. Then point your browser to a page in your web application
with the addition of your querystring parameter and the command “globals”. For example, if your querystring parameter is
“desdebug”:

http://www.myapp.com?desdebug=globals

It will output a page listing all properties on the PeterBlum.DES.Globals property, which includes those from the
custom.des.config and web.config files.

Alternatively, use the PeterBlum.DES.Globals.DescribeProperties() method. It returns a string that you can
assign to a Label or LiteralControl control to show on the page or you can set up <@ Page Trace="true" > and output
them using Page.Trace.Write().

PeterBlum.DES.Globals.DescribeProperties(showHTML)

showHTML

Pass true to format the text in HTML format (as a table) and false to format it as a carriage return delimited set
of lines useful to output to a file or other system that cannot use HTML.

Call it within the Page_Load() method, like this.

DebugLabel1.Text = PeterBlum.DES.Globals.DescribeProperties(true)

Page.Trace.Write(PeterBlum.DES.Globals.DescribeProperties(false))

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 54 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Programmatically Assigning Globals
If you want to apply values programmatically, do it in the Global.asax file using the Application_Start() method.
Just know the name of the property. Then assign it to either PeterBlum.DES.Globals or PeterBlum.DES.StringLookup, as
appropriate.

Note: The first time you access a property on PeterBlum.DES.Globals, it will load the values from custom.DES.config.

Here is an example where the default for PeterBlum.DES.Globals.Page.ShowAlertOnChange is set in the
Application_Start() method of Global.asax. The global property name is DefaultShowAlertOnChange.

[C#]

protected void Application_Start(Object sender, EventArgs e)
{
 PeterBlum.DES.Globals.DefaultShowAlertOnChange = true;
}

[VB]

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 PeterBlum.DES.Globals.DefaultShowAlertOnChange = True
End Sub

Adding Globals After Config Files Load
While assigning property settings to the PeterBlum.DES.Globals class can be done within Application_Start(),
there are several collection-type properties within the des.config file for which you may want to add items. This should
happen after the config files have been loaded because each time they load, they clear the collection-type properties.

DES defines the PeterBlum.DES.ConfigFile class to manage the settings loaded from the various config files.

These properties include:

Property name in
PeterBlum.DES.ConfigFile

Collection of (class) Defined in this section of
custom.des.config

DataTypes Subclasses of DESTypeConverters <DataTypes>

ErrorFormatters Subclasses of BaseErrorFormatter <ErrorFormatters>

Conditions Subclasses of BaseCondition <Conditions>

ErrorMessagePopupViews ErrorMessagePopupView <ErrorMessagePopupViews>

HintPopupViews HintPopupView <HintPopupViews>

CreditCards CreditCardDescription <CreditCards>

ThirdPartyControls ThirdPartyControlDef <ThirdPartyControls>
See Using Third Party Controls.pdf

RequiredSelectionControls RequiredSelectionControl <RequiredSelectionControls>

Use the PeterBlum.DES.ConfigFile.ConfigFilesLoaded event to invoke your own method that can add to any of these lists.
It is passed the PeterBlum.DES.ConfigFile object. Here is the delegate definition:

[C#]

delegate void ConfigFilesLoadedEventHandler(PeterBlum.DES.ConfigFile pConfigFile);

[VB]

Delegate Sub ConfigFilesLoadedEventHandler(_
 ByVal pConfigFile As PeterBlum.DES.ConfigFile)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 55 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

This is how you attach to the ConfigFilesLoaded event:

[C#]

protected void Application_Start(Object sender, EventArgs e)
{
 PeterBlum.DES.ConfigFile.ConfigFilesLoaded +=
 new PeterBlum.DES.ConfigFilesLoadedEventHandler(MyConfigFilesLoaded);
}

protected void MyConfigFilesLoaded(PeterBlum.DES.ConfigFile pConfigFile)
{
 // Modify the collection-type properties in pConfigFile here
 // For most, create an instance of the object
 // then pass it to the Add() method on the property.
 // For ThirdPartyControls, see the Using Third Party Controls.pdf
 // for available methods on the pConfigFile.ThirdPartyControls method.
}

[VB]

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 AddHandler PeterBlum.DES.ConfigFile.ConfigFilesLoaded _
 AddressOf MyConfigFilesLoaded
End Sub

Protected Sub MyConfigFilesLoaded(ByVal pConfigFile As PeterBlum.DES.ConfigFile)
 ' Modify the collection-type properties in pConfigFile here
 ' For most, create an instance of the object
 ' then pass it to the Add() method on the property.
 ' For ThirdPartyControls, see the Using Third Party Controls.pdf
 ' for available methods on the pConfigFile.ThirdPartyControls method.
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 56 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

DES.config and Custom.DES.config File
DES provides two XML configuration files that allow you to customize the design mode and runtime default values. Both of
these files are installed into the [web application root]\DES\ folder.

 des.config – Settings defined by PeterBlum.com. You do not edit this file. It is replaced on each new release of DES.

 custom.des.config – Settings that you edit, usually with the Global Settings Editor.

By having two files describing the configuration, any updates to des.config will not require that you replace or merge your
own edits. You simply get a new des.config file and leave custom.des.config untouched.

These configuration files contain these sections. Here is how to edit them:

 Global Properties (\Configuration\GlobalProperties) – These values are edited by the Global Settings Editor. They are
assigned to static/shared properties on PeterBlum.DES.Globals.

 String Lookup (\Configuration\StringLookup) - These values are edited by the Global Settings Editor. They are
assigned to static/shared properties on PeterBlum.DES.StringLookup.

 Regular Expression Patterns (\Configuration\RegExPatterns) – A list of the Regular expressions found in the
RegexValidator’s editor for its Expressions property. Each expression has a unique name.

 DataTypes (\Configuration\DataTypes) – A list of data types (PeterBlum.DES.DESTypeConverter subclasses) that
appear in the editor for the DataType property of various Validator controls. Each DESTypeConverter has a unique name
that appears in the editor.

 Error Formatters (\Configuration\ErrorFormatters) – A list of Error Formatters (PeterBlum.DES.BaseErrorFormatter
subclasses) that appear in the editor for the ErrorFormatter property of Validator controls. Each Error Formatter has a
unique name that appears in the editor.

 Conditions (\Configuration\Conditions) – A list of Conditions (PeterBlum.DES.BaseCondition subclasses) that appear in
the editor for the Enabler property of Validator controls and within the Conditions property of the
MultiConditionValidator and CountTrueCondiitonValidator controls. Each Condition has a unique name that appears in
the editor.

 ErrorMessagePopupViews (\Configuration\ErrorMessagePopupViews) – A list of PopupView definitions used by the
PopupErrorFormatters. These values are edited by the Global Settings Editor.

 HintPopupViews (\Configuration\HintPopupViews) – A list of PopupView definitions used by the HintFormatters. These
values are edited by the Global Settings Editor.

 CreditCards (\Configuration\CreditCards) – A list of credit card patterns and rules for use with the
CreditCardNumberValidator and CreditCardNumberCondition.

 Third Party Controls (\Configuration\ThirdPartyControls) - Any third party controls that act like Microsoft's TextBox,
RadioButton, CheckBox, ListBox or DropDownList but are not subclassed from those controls can still be used in DES
by defining them here. Once defined, DES will list them in the ControlIDToEvaluate (and similar properties) in the
Properties Editor and various conditions that support the Microsoft controls will support the third party control. See
“Supporting Third Party Data Entry Controls” in the Installation Guide.

 Get Child Methods (\Configuration\GetChildMethods) – Used when you develop custom controls that have multiple
controls representing one value, such as a list of radio buttons. This defines the client-side JavaScript function that will
gather data from those controls.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 57 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Expanded Properties Editor
In design mode, the Properties Editor is used to change property values. Because many DES controls are really several
controls combined together, an Expanded Properties Editor is now available. It offers these enhancements over the Visual
Studio Properties Editor:

 Quickly jump between the properties for each part of the selected control. The picture below shows DateTextBox with
the toolbar along the top showing the parts. Note: The toolbar and Object To Edit elements are not shown on many DES
controls.

 The normal Properties Editor lists properties sorted by their names and category names. This ordering is not effective
because it does not group related properties together and in an order that makes sense. The Expanded Properties Editor

provides an ordering that is better for setting up the control by clicking the (Best Order) button.

 There are numerous properties. How do you know which ones are important or not often used? When you use the
(Best Order) button, it can show properties by their importance by using the buttons Recommended Properties and
Properties Assistant.

 You can quickly return a single property to its default value by selecting it and clicking the Use Default button.

You can select it from the context/task menu on the control, from the Properties Pages icon at the top of Visual Studio’s
Properties Editor, and from a link at the bottom of Visual Studio’s Properties Editor.

Select parts of
controls

(optional)

Best Order
button

Restore property to
its default value

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 58 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the Expanded Properties Editor
The toolbar and dropdownlist at the top let you switch to the various controls that are part of this control. Shown above is the
DateTextBox. If you notice two Context Menus, it’s because both the DateTextBox and its Calendar provide Context Menus.

The most powerful feature of this window is the “Best Order” button immediately above the property names. Click it to
have the properties and categories listed in the order recommended by PeterBlum.com for setting up the control.

Once the Best Order button is selected, the toolbar looks like this:

All properties have been assigned one of these states: Required, Recommended, Sometimes used, or Rarely used. Click the
Recommended Properties button to show only the Required and Recommended properties. This is a very good way to set up
a newly added control. If you want to customize which states are shown, use the Properties Assistant button.

Finally, along the bottom are the Use Default button and the default value shown to its right. This is a quick way to restore the
individual property to its default.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 59 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using These Controls with AJAX
AJAX is a technology that allows modern browsers to communicate with your server side code without a postback. It
typically is used to update values through DHTML – the object oriented framework of the browser. The page developer may
replace the value of a single attribute on an HTML tag, such as the text shown on a textbox or replace a block the page’s
HTML.

AJAX is packaged within many third party products, including Microsoft ASP.NET AJAX, Telerik RadControls
(“RadAjax”), and MagicAjax. Each of these products has the capability to replace a block of the page’s HTML with any web
controls you desire.

When those controls are within Peter’s Data Entry Suite, you must take additional actions using the
PeterBlum.DES.AJAXManager class. What follows is a brief overview of these actions. They are detailed in each
section associated with AJAX framework you are using.

ALERT: You are virtually guaranteed JavaScript errors and lack of functionality if you do not implement these directions
correctly.

Click on any of these topics to jump to them:

 Using Microsoft ASP.NET AJAX

 Using Telerik RadAjax

 Using other AJAX-enabled Telerik controls

 Using Infragistics AJAX-enabled Controls

 Using ComponentArt CallBack

 Using MagicAjax

 Using other AJAX Products

 AJAXManager Properties

 Other AJAXManager Methods

 Analyzing the InAJAXUpdate Properties on DES Controls

ALERT: Not every third party AJAX product will work with Peter’s Data Entry Suite, even after following the directions here.
Some may require an entirely different approach. For example, Anthem requires that you subclass each control you intend to
update the HTML. PeterBlum.com will not be developing custom code for these products.

http://ajax.asp.net/default.aspx?tabid=47�
http://www.telerik.com/�
http://www.magicajax.net/�
http://sourceforge.net/projects/anthem-dot-net�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 60 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using Microsoft ASP.NET AJAX
http://ajax.asp.net

Microsoft ASP.NET AJAX framework supplies the UpdatePanel control to replace HTML. You need to apply these steps if
any DES control is inside an UpdatePanel or refers to a control inside the UpdatePanel.

Examples follow these steps.

ALERT: You are virtually guaranteed JavaScript errors and lack of functionality if you do not implement these steps
correctly.

1. Make sure the ScriptManager control is on the page.

2. Set ScriptManager.EnablePartialRendering to true either in the ASP.NET declaration or in the Page’s PreInit event.

3. Tell DES that you are using Microsoft AJAX with its controls on this page.

When using the PageManager Control:

Set the AJAXFramework property to MicrosoftAJAX. Leave the AJAXControlID property unassigned.

<des:PageManager runat="server" AJAXFramework="MicrosoftAJAX" />

Programmatically:

Call the UsingMicrosoftAJAX() method in Page_Load().The method is shown here:

PeterBlum.DES.AJAXManager.UsingMicrosoftAJAX()

ALERT: For any code that uses the PeterBlum.DES.AJAXManager, it must run every time Page_Load() is
called. Do not nest it inside of an IF statement like If IsPostBack = False Then.

4. Identify which DES controls are participating in the AJAX update. They need to transfer data to the client-side during
each callback. Aside from those inside of an UpdatePanel, include those that point to controls inside of UpdatePanels.
Examples: Validators pointing to data entry controls, Enabler conditions, FieldStateControllers, CalculationControllers,
and NativeControlExtenders.

The challenge is that if you include controls that are not part of the callback, the callback will have poorer performance
because there is more data transferred and processed. To get the best performance, more work is involved in setup.

If you don’t include controls that are part of the callback, after the callback those controls either will not operate correctly
or will generate javascript errors. So some care is needed.

There are three approaches:

 Include all controls in the callback

 Easy setup, no operating problems after callback.

 Poorest performance where data transfer is at the maximum. Performs very well when most or all of the DES
controls are involved in the callback.

 Good Performance – This is the default setup.

 Easy but manual assignment of the InAJAXUpdate property is required for controls outside of UpdatePanels
that connect with controls involved in AJAX.

 Data transfer is minimized although the server does more work.

 Incorrect setup results in controls malfunctioning.

 Best Performance

 Must identify every control involved in the callback

 Data transfer is minimized and the server does less work.

 Incorrect setup results in controls malfunctioning.

They are discussed below.

http://atlas.asp.net/default.aspx?tabid=47�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 61 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Include All Controls In the Callback

Choose this approach:

 when most or all DES controls are involved in the Callback

 when you have encountered malfunctions after a callback to see if they go away. (You will then turn it off and set
InAJAXUpdate = true on the controls with the problems.)

When using the PageManager control:

Set the AllInAJAXUpdate property to true.

<des:PageManager runat="server"
 AJAXFramework="MicrosoftAJAX" AllInAJAXUpdate="True" />

Programmatically:

Set the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property to true in Page_Load(). This will
tell all DES controls to transmit their data during each AJAX callback.

PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true

See “Example 1 – Using the AllInAJAXUpdate property”.

Good Performance

This is the default setup. Performance is determined by how much data is transmitted during the callback and how much
work the server has to do to create that data. The best performance is to set the InAJAXUpdate property to true on
every control involved in the callback, as described below in “Best Performance”, below. That requires some work on
your part.

This option provides the best performance for data transmitted at the expense of the server performance. The server sets
InAJAXUpdate after searching for the UpdatePanel as a container control. That searching is where the server does more
work.

Using this method:

 By default, this method is active. If you have previously set AllInAJAXUpdate to true (see above) or
SmartSetInAJAXUpdate to false, switch their value. (Those properties are on the PageManager control or the
PeterBlum.DES.Globals.Page.AJAXManager object.)

 For any DES controls outside of UpdatePanels that point to controls inside of the UpdatePanels, you must set their
InAJAXUpdate property to true, as shown under “Optimized performance”, below. Examples: Validators
pointing to data entry controls, Enabler conditions, FieldStateControllers, CalculationControllers, and
NativeControlExtenders.

 Feel free to set InAJAXUpdate to true on any DES controls that are part of the callback to avoid having the CPU
search for the UpdatePanel. For any you don’t set, DES will do the detection of the UpdatePanel.

BEST PERFORMANCE DESCRIBED ON THE NEXT PAGE

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 62 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Best Performance

By setting InAJAXUpdate to true on exactly those DES controls involved in the callback, transmission time and CPU
time are reduced.

Using this method:

 Set to false the two properties that make setup easier, but less optimal: AllInAJAXUpdate and
SmartSetInAJAXUpdate. AllInAJAXUpdate defaults to false, so you probably won’t need to do anything to it.

When using the PageManager control:

Set the SmartSetInAJAXUpdate property to false.

<des:PageManager runat="server" AJAXFramework="MicrosoftAJAX"
 SmartSetInAJAXUpdate="False" />

Programmatically:

Set the PeterBlum.DES.AJAXManager.Current. SmartSetInAJAXUpdate property to false in
Page_Load(). This will tell all DES controls to transmit their data during each AJAX callback.

PeterBlum.DES.AJAXManager.Current.SmartSetInAJAXUpdate = false

 Every DES control has the InAJAXUpdate property. Set it to true on those that are in the UpdatePanel, or are
connected to controls inside the UpdatePanel. For example:

<des:RequiredTextValidator InAJAXUpdate="true" [other properties] />

<des:TextBox InAJAXUpdate="true" [other properties] />

<des:FieldStateController InAJAXUpdate="true" [other properties] />

<des:Button InAJAXUpdate="true" [other properties] />

<des:CalculationController InAJAXUpdate="true" [other properties] />

 To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

See “Example 2 – Identify individual DES Controls for Best Performance”.

Visual Studio and Visual Web Developer design mode suggestions:

 Select all DES controls that are in the AJAX update. The Properties Editor will display all properties they have in
common, including InAJAXUpdate. Set it to true to update all at once.

 ASP.NET 2 only. Each DES control has a SmartTag with the setting Involved in an AJAX Update. Mark its
checkbox.

To let the computer do some of the work, use the
PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate() method to update a container control, like a
panel, so that all of its child DES controls have their InAJAXUpdate property set to true. If any DES control points to
another control outside of the container, its InAJAXUpdate property will also be set to true. However, if there is a
DES control outside the container that is not pointed to by a control inside the container, it will still need you to set
InAJAXUpdate. See “PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate”.

CONTINUE TO THE NEXT PAGE FOR STEPS 5 AND 6

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 63 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

5. If a type of DES control or feature is not initially added to page but will later be added during a callback, it needs to be
identified when the page is initially requested (Page.IsPostBack = false). Examples include a DataGrid or GridView
that switches to edit mode with textboxes and validators; the MultiView; and the Wizard which often does not have data
entry controls on the first step.

When using the PageManager control:

Using the chart on the next page, set the desired property to true on the PageManager.PreLoadForAJAX property. For
example:

<des:PageManager runat="server" PreLoadForAJAX-Validators="True"
 PreLoadForAJAX-TextBoxes="True" />

Programmatically:

Call PeterBlum.DES.AJAXManager.PreregisterForAJAX().

You pass the enumerated type PeterBlum.DES.AJAXManager.FeatureList, whose values are listed in the
chart below. For example:

PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

Note: It is safe to call PreregisterForAJAX() even when the controls are shown when the page is first generated. All it
does is guarantee scripts are added to the page. If you call it when the controls will never be shown, it adds the overhead
of loading script files and setting up small global objects.

The PreregisterForAJAX() method also accepts an array of FeatureList values like this:

[C#]

using PeterBlum.DES;
...
AJAXManager.FeatureList[] vFeatures =
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes};
AJAXManager.PreregisterForAJAX(vFeatures);

[VB]

Imports PeterBlum.DES
...
Dim vFeatures() As AJAXManager.FeatureList = New AJAXManager.FeatureList() _
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes}
AJAXManager.PreregisterForAJAX(vFeatures)

See “Example 3 – Controls added during Callback”.

CHART OF FEATURES IS ON THE NEXT PAGE

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 64 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

AJAXManager.FeatureList values and PageManager.PreLoadForAJAX properties

Validators Use when no validator is on the initial page but will be added during a callback.
ValidationSummary Use when no ValidationSummary is on the initial page but will be added during a

callback.
CombinedErrorMessages Use when a CombinedErrorMessages control is added on a callback.
TextBoxes Use when no DES TextBox is on the initial page but will be added during a callback. This

includes TextBox, FilteredTextBox, IntegerTextBox, DecimalTextBox, PercentTextBox,
and CurrencyTextBox. Also consider Hints, AutoPostBack.

MultiSegmentDataEntry Use when no MultiSegmentDataEntry control is on the initial page but will be added
during a callback. Also consider Hints.

Hints

(Also when using ToolTips)
Use when no hints are on the initial page but will be used during a callback. This also
applies when using the hint properties on DES’s textboxes and MultiSegmentDataEntry
controls.
By default, ToolTips are converted to hints. When using ToolTips, you need to preload
the Hints feature or to turn off the conversion of ToolTips to hints with the
ToolTipsAsHints property on the PageManager control or
PeterBlum.DES.Globals.Page. See “Properties on the
PeterBlum.DES.Globals.Page.HintManager Property” topic in the Interactive Pages
Guide.

DateTextBoxes * Use when no DateTextBox, AnniversaryTextBox, or MonthYearTextBox is on the initial
page but will be added during the callback. Also consider Hints, AutoPostBack.

TimeTextBoxes * Use when no TimeOfDayTextBox or DurationTextBox is on the initial page but will be
added during the callback. Also consider Hints, AutoPostBack.

Calendar * Use when no Calendar is on the initial page but will be added during the callback.
MultiSelectionCalendar* Use when no MultiSelectionCalendar is on the initial page but will be added during the

callback.
MonthYearPicker * Use when no MonthYearPicker or PopupMonthYearPicker is on the initial page but will

be added during the callback.
TimePicker * Use when no TimePicker or PopupTimePicker is on the initial page but will be added

during the callback.
SpecialDates Use when no SpecialDates control is on the initial page but will be added during the

callback.
ContextMenu Use when no ContextMenu control is on the initial page but will be added during the

callback.
FieldStateControllers Use when no type of FieldStateController is on the initial page but will be added during a

callback. This includes FieldStateController, MultiFieldStateController,
FSCOnCommand, and MultiFSCOnCommand.

CalculationControllers Use when no CalculationController is on the initial page but will be added during a
callback.

TextCounter Use when no TextCounter is on the initial page but will be added during the callback.
AutoPostBack Use when you validate on AutoPostBack.
ChangeMonitor Use when the ChangeMonitor is added to the page after postback.
SubmitControls Use when no Button, LinkButton, or ImageButton is on the initial page but will be added

during the callback.
DisableOnSubmit Use when no Button uses the DisableOnSubmit feature on the initial page but will be used

during a callback.
Popups Use when you create a control using the Popup code.

* The next step applies in these cases.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 65 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

6. For any of the following items from the above chart: DateTextBoxes, TimeTextBoxes, Calendar,
MultiSelectionCalendar, MonthYearPicker, and TimePicker, their popup features must be preloaded
during the initial page load, even though the control itself is not shown until the AJAX update.

Follow these instructions for each type of control that was identified:

 Create a new instance of the control to the page. Put it just after the <form> tag in the web form (aspx) file or at the
beginning of the UserControl. It should not be inside the UpdatePanel. This will avoid having it enclosed in another
web control that may have its Visible property set to false.

<form id="form1" runat="server" >
 <des:DateTextBox id="DummyDTB" runat="server" />
 <asp:othercontrols here />

Make sure this control is always added to the page, even if you are not sure if same type of control will actually be
added during a callback. WARNING: It must be added to the Page’s Control tree before any of the same type
controls that you plan to show in the AJAX panel because its PreRender method must run first. Otherwise, you will
get JavaScript errors after the callback.

 Set up the popup elements on this control the way you want to see them when the control is shown in the browser.
These popups will be written out when the page is first generated.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar propertyname="value" propertyname2="value" />
 </PopupCalendar>
</des:DateTextBox>

 Call the new control’s PreLoadForAJAX() method in Page_Load().

DummyDTB.PreLoadForAJAX()

The call to PreLoadForAJAX()prevents this control from appearing on the page, but DES will use it to preload
the HTML and scripts of its popups.

See “Example 4 – Control with Popups first created during Callback”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 66 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 1 – Using the AllInAJAXUpdate property

Suppose you have an UpdatePanel with a DES TextBox, an associated RequiredTextValidator, and a DES Button. You
choose the AllInAJAXUpdate property because these are the only DES controls on the page.

<asp:ScriptManager id="ScriptManager1" runat="server"
EnablePartialRendering="True">

</asp:ScriptManager>
<asp:UpdatePanel id="UpdatePanel1" runat="server">
 <ContentTemplate>

 <des:TextBox id="TextBox1" runat="server" />
 <des:RequiredTextValidator id="RTV1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

 <des:Button id="Submit" runat="server" Text="Submit" />

 </ContentTemplate>
</asp:UpdatePanel>

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="MicrosoftAJAX" AllInAJAXUpdate="True" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingMicrosoftAJAX();
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true;

[VB]

PeterBlum.DES.AJAXManager.UsingMicrosoftAJAX()
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 67 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 2 – Identify individual DES Controls for Best Performance

Suppose you have an UpdatePanel with a DES TextBox, an associated RequiredTextValidator, and a DES Button. You want
to use the InAJAXUpdate property on each DES control in the UpdatePanel because there are other DES controls on the
page.

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

<asp:ScriptManager id="ScriptManager1" runat="server"
EnablePartialRendering="True">

</asp:ScriptManager>
<asp:UpdatePanel id="UpdatePanel1" runat="server">
 <ContentTemplate>

 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

 <des:Button id="Submit" runat="server" Text="Submit" InAJAXUpdate="true" />

 </ContentTemplate>
</asp:UpdatePanel>

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="MicrosoftAJAX" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingMicrosoftAJAX();

[VB]

PeterBlum.DES.AJAXManager.UsingMicrosoftAJAX()

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 68 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 3 – Controls added during Callback

Suppose you have an UpdatePanel with a DES TextBox, an associated RequiredTextValidator, and a DES Button. The
TextBox and Validator controls are inside of a Panel which is Visible=false until the DES Button sets it to Visible=true
during a callback.

<asp:ScriptManager id="ScriptManager1" runat="server"
EnablePartialRendering="True">

</asp:ScriptManager>
<asp:UpdatePanel id="UpdatePanel1" runat="server">
 <ContentTemplate>

 <asp:Panel id="Panel1" runat="server" Visible="false">
 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

 </asp:Panel>
 <des:Button id="Show" runat="server" Text="Submit" InAJAXUpdate="true"
 Click="Show_ButtonClick" />

 </ContentTemplate>
</asp:UpdatePanel>

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="MicrosoftAJAX"
PreLoadForAJAX-Validators="True" PreLoadForAJAX-TextBoxes="True">

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingMicrosoftAJAX();
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.Validators);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes);

[VB]

PeterBlum.DES.AJAXManager.UsingMicrosoftAJAX()
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

This code goes in Show_ButtonClick():

[C#]

Panel1.Visible = true;

[VB]

Panel1.Visible = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 69 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 4 – Control with Popups first created during Callback

Suppose you have an UpdatePanel with GridView that shows a DateTextBox in edit mode. Until the GridView is in edit
mode, the <EditItemTemplate> is not created, requiring a dummy DateTextBox to preload the popups. The dummy
DateTextBox’s popups must have the same properties as the actual DateTextBox. In this case, CssClass is set to a custom
style sheet class. Reminder: The Dummy control must not be inside the UpdatePanel. Try to get it just below the <form> tag.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
</des:DateTextBox>

<asp:ScriptManager id="ScriptManager1" runat="server"
EnablePartialRendering="True">

</asp:ScriptManager>
<asp:UpdatePanel id="UpdatePanel1" runat="server">
 <ContentTemplate>

 <asp:GridView id="GridView1" runat="server" OnRowCreated="GridView1_RowCreated" >
 <Columns>
 <des:CommandField ShowEditButton="True" />
 <asp:TemplateField>
 <ItemTemplate>…</ItemTemplate>
 <EditItemTemplate>

 <des:DateTextBox id="DateTextBox1" runat="server" InAJAXUpdate="true" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
 </des:DateTextBox>

 </EditItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

 </ContentTemplate>
</asp:UpdatePanel>

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="MicrosoftAJAX"
PreLoadForAJAX-DateTextBoxes="True" >

</des:PageManager>

This code goes in Page_Load():

[C#]

DummyDTB.PreLoadForAJAX();

[VB]

DummyDTB.PreLoadForAJAX()

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingMicrosoftAJAX();
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes);
DummyDTB.PreLoadForAJAX();

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 70 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

PeterBlum.DES.AJAXManager.UsingMicrosoftAJAX()
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes)
DummyDTB.PreLoadForAJAX()

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 71 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using Telerik RadAjax
http://www.telerik.com

ALERT: Peter’s Data Entry Suite requires RadAjax version 1.0.1 or higher. Do not use it with RadAjax 1.0.0. It supports
Telerik “Prometheus”.

RadAJAX supplies two controls that can replace HTML on the page: radAjaxManager and radAjaxPanel. Both are supported
by the following steps.

Examples follow these steps:

ALERT: You are virtually guaranteed JavaScript errors and lack of functionality if you do not implement these steps
correctly.

1. For any page with a radAjaxManager or radAjaxPanel control and DES controls, tell DES that you are using RadAJAX.

RadAjax (not the “Prometheus” version)

When using the PageManager:

Set AJAXFramework to TelerikRadAJAX and AJAXControlID to the ID of the radAjaxManager or radAjaxPanel.
Note that these controls must be in the same naming container.

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="TelerikRadAJAX" AJAXControlID="radAjaxControl" >

</des:PageManager>

Programmatically:

Call this method in Page_Load():

PeterBlum.DES.AJAXManager.UsingRadAJAX(radajaxmanager1)

PeterBlum.DES.AJAXManager.UsingRadAJAX(radajaxpanel1)

ALERT: This method will set the EnableOutsideScripts property to true on the RadAjax control.

RadAjax - The “Prometheus” version

When using the PageManager:

Set AJAXFramework to TelerikRadAJAX and AJAXControlID to the ID of the Microsoft ASP.NET AJAX
ScriptManager control. Note that these controls must be in the same naming container.

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="TelerikRadAJAX" AJAXControlID="ScriptManager1" >

</des:PageManager>

Programmatically:

Call this method in Page_Load():

PeterBlum.DES.AJAXManager.UsingRadAJAX(ScriptManager.GetCurrent(Page))

ALERT: For any code that uses the PeterBlum.DES.AJAXManager, it must run every time Page_Load() is
called. Do not nest it inside of an IF statement like If IsPostBack = False Then.

http://www.telerik.com/�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 72 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

2. Optional step If you are using the radAjaxManager control, DES can set the InAJAXUpdate property to true on all
DES controls, avoiding the work described in step 3. There

Add this line to the Application_Start() method of the Global.asax file.

[C#]

PeterBlum.DES.TelerikWebUI.Globals.AutomaticRadAJAXManager();

[VB]

PeterBlum.DES.TelerikWebUI.Globals.AutomaticRadAJAXManager()

ALERT: Visual Basic users who are using a Web Application Project must prepend the call with their Root Namespace.
The Root Namespace is shown in the Project’s Properties, under the Assembly tab.

For example: MyRootNamespace.PeterBlum.DES.TelerikWebUI.Globals. AutomaticRadAJAXManager()

3. Identify which DES controls are participating in the AJAX update. They need to transfer data to the client-side during
each callback. Aside from those inside of an radAjaxPanel and radAjaxManager, include those that point to controls
inside of UpdatePanels. Examples: Validators pointing to data entry controls, Enabler conditions, FieldStateControllers,
CalculationControllers, and NativeControlExtenders.

The challenge is that if you include controls that are not part of the callback, the callback will have poorer performance
because there is more data transferred and processed. To get the best performance, more work is involved in setup.

If you don’t include controls that are part of the callback, after the callback those controls either will not operate correctly
or will generate javascript errors. So some care is needed.

There are three approaches:

 Include all controls in the callback

 Easy setup, no operating problems after callback.

 Poorest performance where data transfer is at the maximum. Performs very well when most or all of the DES
controls are involved in the callback.

 Good Performance – This is the default setup.

 Easy but manual assignment of the InAJAXUpdate property is required for controls outside of radAjaxPanels
and radAjaxManagers that connect with controls involved in AJAX.

 Data transfer is minimized although the server does more work.

 Incorrect setup results in controls malfunctioning.

 Best Performance

 Must identify every control involved in the callback

 Data transfer is minimized and the server does less work.

 Incorrect setup results in controls malfunctioning.

They are discussed below.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 73 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Include All Controls In the Callback

Choose this approach:

 when most or all DES controls are involved in the Callback

 when you have encountered malfunctions after a callback to see if they go away. (You will then turn it off and set
InAJAXUpdate = true on the controls with the problems.)

When using the PageManager control:

Set the AllInAJAXUpdate property to true.

<des:PageManager runat="server" AJAXFramework="TelerikRadAJAX"
 AJAXControlID="ScriptManager1" AllInAJAXUpdate="True" />

Programmatically:

Set the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property to true in Page_Load(). This will
tell all DES controls to transmit their data during each AJAX callback.

PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true

See “Example 1 – Using the AllInAJAXUpdate property”.

Good Performance

This is the default setup. Performance is determined by how much data is transmitted during the callback and how much
work the server has to do to create that data. The best performance is to set the InAJAXUpdate property to true on
every control involved in the callback, as described below in “Best Performance”, below. That requires some work on
your part.

This option provides the best performance for data transmitted at the expense of the server performance. The server sets
InAJAXUpdate after searching for the radAjaxPanel as a container control. That searching is where the server does more
work. It also sets controls in radAjaxManager.

Using this method:

 By default, this method is active. If you have previously set AllInAJAXUpdate to true (see above) or
SmartSetInAJAXUpdate to false, switch their value. (Those properties are on the PageManager control or the
PeterBlum.DES.Globals.Page.AJAXManager object.)

 For any DES controls outside of radAjaxPanels and radAjaxManager that point to controls inside of those controls,
you must set their InAJAXUpdate property to true, as shown under “Optimized performance”, below. Examples:
Validators pointing to data entry controls, Enabler conditions, FieldStateControllers, CalculationControllers, and
NativeControlExtenders.

 If you did not use the AutomaticRadAJAXManager() method described in step 2, add this line to the
Page_Load() method for each radAjaxManager control.

[C#]

PeterBlum.DES.TelerikWebUI.Globals.SetUpdatedControlsInAJAXUpdate(radAjaxManager);

[VB]

PeterBlum.DES.TelerikWebUI.Globals.SetUpdatedControlsInAJAXUpdate(radAjaxManager)

ALERT: Visual Basic users who are using a Web Application Project must prepend the call with their Root
Namespace. The Root Namespace is shown in the Project’s Properties, under the Assembly tab.

For example: MyRootNamespace.PeterBlum.DES.TelerikWebUI.Globals.SetUpdatedControlsInAJAXUpdate()

 Feel free to set InAJAXUpdate to true on any DES controls that are part of the callback to avoid having the CPU
search for the UpdatePanel. For any you don’t set, DES will do the detection of the UpdatePanel.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 74 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Best Performance

By setting InAJAXUpdate to true on exactly those DES controls involved in the callback, transmission time and CPU
time are reduced.

Using this method:

 Set to false the two properties that make setup easier, but less optimal: AllInAJAXUpdate and
SmartSetInAJAXUpdate. AllInAJAXUpdate defaults to false, so you probably won’t need to do anything to it.

When using the PageManager control:

Set the SmartSetInAJAXUpdate property to false.

<des:PageManager runat="server" AJAXFramework="TelerikRadAJAX"
 AJAXControlID="ScriptManager1" SmartSetInAJAXUpdate="False" />

Programmatically:

Set the PeterBlum.DES.AJAXManager.Current. SmartSetInAJAXUpdate property to false in
Page_Load(). This will tell all DES controls to transmit their data during each AJAX callback.

PeterBlum.DES.AJAXManager.Current.SmartSetInAJAXUpdate = false

 Every DES control has the InAJAXUpdate property. Set it to true on those that are in the radAjaxPanel and
radAjaxManager, or are connected to controls inside them. For example:

<des:RequiredTextValidator InAJAXUpdate="true" [other properties] />

<des:TextBox InAJAXUpdate="true" [other properties] />

<des:FieldStateController InAJAXUpdate="true" [other properties] />

<des:Button InAJAXUpdate="true" [other properties] />

<des:CalculationController InAJAXUpdate="true" [other properties] />

 To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

See “Example 2 – Identify individual DES Controls for Best Performance”.

Visual Studio and Visual Web Developer design mode suggestions:

 Select all DES controls that are in the AJAX update. The Properties Editor will display all properties they have in
common, including InAJAXUpdate. Set it to true to update all at once.

 ASP.NET 2 only. Each DES control has a SmartTag with the setting Involved in an AJAX Update. Mark its
checkbox.

To let the computer do some of the work, use the
PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate() method to update a container control, like a
panel, so that all of its child DES controls have their InAJAXUpdate property set to true. If any DES control points to
another control outside of the container, its InAJAXUpdate property will also be set to true. However, if there is a
DES control outside the container that is not pointed to by a control inside the container, it will still need you to set
InAJAXUpdate. See “PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate”.

CONTINUE TO THE NEXT PAGE FOR STEPS 4 AND 5

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 75 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

4. If a type of DES control or feature is not initially added to page but will later be added during a callback, it needs to be
identified when the page is initially requested (Page.IsPostBack = false). Examples include a DataGrid or GridView that
switches to edit mode with textboxes and validators; and the Wizard which often does not have data entry controls on the
first step.

When using the PageManager control:

Using the chart on the next page, set the desired property to true on the PageManager.PreLoadForAJAX property. For
example:

<des:PageManager runat="server" PreLoadForAJAX-Validators="True"
PreLoadForAJAX-TextBoxes="True" />

Programmatically:

Call PeterBlum.DES.AJAXManager.PreregisterForAJAX().

You pass the enumerated type PeterBlum.DES.AJAXManager.FeatureList, whose values are listed in the
chart below. For example:

PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

Note: It is safe to call PreregisterForAJAX() even when the controls are shown when the page is first generated. All it
does is guarantee scripts are added to the page. If you call it when the controls will never be shown, it adds the overhead
of loading script files and setting up small global objects.

The PreregisterForAJAX() method also accepts an array of FeatureList values like this:

[C#]

using PeterBlum.DES;
...
AJAXManager.FeatureList[] vFeatures =
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes};
AJAXManager.PreregisterForAJAX(vFeatures);

[VB]

Imports PeterBlum.DES
...
Dim vFeatures() As AJAXManager.FeatureList = New AJAXManager.FeatureList() _
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes}
AJAXManager.PreregisterForAJAX(vFeatures)

See “Example 3 – Controls added during Callback”.

CHART OF FEATURES IS ON THE NEXT PAGE

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 76 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

AJAXManager.FeatureList values and PageManager.PreLoadForAJAX properties

Validators Use when no validator is on the initial page but will be added during a callback.
ValidationSummary Use when no ValidationSummary is on the initial page but will be added during a

callback.
CombinedErrorMessages Use when a CombinedErrorMessages control is added on a callback.
TextBoxes Use when no DES TextBox is on the initial page but will be added during a callback. This

includes TextBox, FilteredTextBox, IntegerTextBox, DecimalTextBox, PercentTextBox,
and CurrencyTextBox. Also consider Hints, AutoPostBack.

MultiSegmentDataEntry Use when no MultiSegmentDataEntry control is on the initial page but will be added
during a callback. Also consider Hints.

Hints

(Also when using ToolTips)
Use when no hints are on the initial page but will be used during a callback. This also
applies when using the hint properties on DES’s textboxes and MultiSegmentDataEntry
controls.
By default, ToolTips are converted to hints. When using ToolTips, you need to preload
the Hints feature or to turn off the conversion of ToolTips to hints with the
ToolTipsAsHints property on the PageManager control or
PeterBlum.DES.Globals.Page. See “Properties on the
PeterBlum.DES.Globals.Page.HintManager Property” topic in the Interactive Pages
Guide.

DateTextBoxes * Use when no DateTextBox, AnniversaryTextBox, or MonthYearTextBox is on the initial
page but will be added during the callback. Also consider Hints, AutoPostBack.

TimeTextBoxes * Use when no TimeOfDayTextBox or DurationTextBox is on the initial page but will be
added during the callback. Also consider Hints, AutoPostBack.

Calendar * Use when no Calendar is on the initial page but will be added during the callback.
MultiSelectionCalendar* Use when no MultiSelectionCalendar is on the initial page but will be added during the

callback.
MonthYearPicker * Use when no MonthYearPicker or PopupMonthYearPicker is on the initial page but will

be added during the callback.
TimePicker * Use when no TimePicker or PopupTimePicker is on the initial page but will be added

during the callback.
SpecialDates Use when no SpecialDates control is on the initial page but will be added during the

callback.
ContextMenu Use when no ContextMenu control is on the initial page but will be added during the

callback.
FieldStateControllers Use when no type of FieldStateController is on the initial page but will be added during a

callback. This includes FieldStateController, MultiFieldStateController,
FSCOnCommand, and MultiFSCOnCommand.

CalculationControllers Use when no CalculationController is on the initial page but will be added during a
callback.

TextCounter Use when no TextCounter is on the initial page but will be added during the callback.
AutoPostBack Use when you validate on AutoPostBack.
ChangeMonitor Use when the ChangeMonitor is added to the page after postback.
SubmitControls Use when no Button, LinkButton, or ImageButton is on the initial page but will be added

during the callback.
DisableOnSubmit Use when no Button uses the DisableOnSubmit feature on the initial page but will be used

during a callback.
Popups Use when you create a control using the Popup code.

* The next step is required for these controls.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 77 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

5. For any of the following items from the above chart: DateTextBoxes, TimeTextBoxes, Calendar,
MultiSelectionCalendar, MonthYearPicker, and TimePicker, their popup features must be preloaded
during the initial page load, even though the control itself is not shown until the AJAX update.

Follow these instructions for each type of control that was identified:

 Create a new instance of the control to the page. Put it just after the <form> tag in the web form (aspx) file or at the
beginning of the UserControl. It should not be inside the UpdatePanel or radAJAXPanel. This will avoid having it
enclosed in another web control that may have its Visible property set to false.

<form id="form1" runat="server" >
 <des:DateTextBox id="DummyDTB" runat="server" />
 <asp:othercontrols here />

Make sure this control is always added to the page, even if you are not sure if same type of control will actually be
added during a callback. WARNING: It must be added to the Page’s Control tree before any of the same type
controls that you plan to show in the radAJAX panel because its PreRender method must run first. Otherwise, you
will get JavaScript errors after the callback.

 Set up the popup elements on this control the way you want to see them when the control is shown in the browser.
These popups will be written out when the page is first generated.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar propertyname="value" propertyname2="value" />
 </PopupCalendar>
</des:DateTextBox>

 Call the new control’s PreLoadForAJAX() method in Page_Load().

DummyDTB.PreLoadForAJAX()

The call to PreLoadForAJAX()prevents this control from appearing on the page, but DES will use it to preload
the HTML and scripts of its popups.

See “Example 4 – Control with Popups first created during Callback”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 78 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 1 – Using the AllInAJAXUpdate property

Suppose you have a radAjaxManager control that updates a DES TextBox and an associated RequiredTextValidator when a
DES Button is clicked. You choose the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property because
these are the only DES controls on the page.

<radA:RadAjaxManager id="RadAjaxManager1" runat="server">
<AjaxSettings>
 <rada:AjaxSetting AjaxControlID="Button1">
 <UpdatedControls>
 <rada:AjaxUpdatedControl ControlID="TextBox1"></rada:AjaxUpdatedControl>
 <rada:AjaxUpdatedControl ControlID="RTV1"></rada:AjaxUpdatedControl>
 </UpdatedControls>
 </rada:AjaxSetting>
</AjaxSettings>
</radA:RadAjaxManager>

<des:TextBox id="TextBox1" runat="server" />
<des:RequiredTextValidator id="RTV1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

<des:Button id="Submit" runat="server" Text="Submit" />

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="TelerikRadAJAX" AJAXControlID="RadAjaxManager1"
AllInAJAXUpdate="True" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingRadAJAX(RadAjaxManager1);
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true;

[VB]

PeterBlum.DES.AJAXManager.UsingRadAJAX(RadAjaxManager1)
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 79 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 2 – Identify individual DES Controls for Best Performance

Suppose you have a radAjaxManager control that updates a DES TextBox and an associated RequiredTextValidator when a
DES Button is clicked. You want to use the InAJAXUpdate property on each DES control in the UpdatePanel because there
are other DES controls on the page.

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

<radA:RadAjaxManager id="RadAjaxManager1" runat="server">
<AjaxSettings>
 <rada:AjaxSetting AjaxControlID="Button1">
 <UpdatedControls>
 <rada:AjaxUpdatedControl ControlID="TextBox1"></rada:AjaxUpdatedControl>
 <rada:AjaxUpdatedControl ControlID="RTV1"></rada:AjaxUpdatedControl>
 </UpdatedControls>
 </rada:AjaxSetting>
</AjaxSettings>
</radA:RadAjaxManager>

<des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
<des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

<des:Button id="Submit" runat="server" Text="Submit" InAJAXUpdate="true" />

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="TelerikRadAJAX" AJAXControlID="RadAjaxManager1">

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingRadAJAX(RadAjaxManager1);
[VB]

PeterBlum.DES.AJAXManager.UsingRadAJAX(RadAjaxManager1)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 80 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 3 – Controls added during Callback

Suppose you have a radAjaxManager control that updates a DES TextBox and an associated RequiredTextValidator when a
DES Button is clicked. The TextBox and Validator controls are inside of a Panel which is Visible=false until the DES
Button sets it to Visible=true during a callback.

<radA:RadAjaxManager id="RadAjaxManager1" runat="server">
<AjaxSettings>
 <rada:AjaxSetting AjaxControlID="Button1">
 <UpdatedControls>
 <rada:AjaxUpdatedControl ControlID="TextBox1"></rada:AjaxUpdatedControl>
 <rada:AjaxUpdatedControl ControlID="RTV1"></rada:AjaxUpdatedControl>
 </UpdatedControls>
 </rada:AjaxSetting>
</AjaxSettings>
</radA:RadAjaxManager>

<asp:Panel id="Panel1" runat="server" Visible="false">
 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

</asp:Panel>
<des:Button id="Show" runat="server" Text="Submit" InAJAXUpdate="true"
 Click="Show_ButtonClick" />

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="TelerikRadAJAX" AJAXControlID="RadAjaxManager1"
PreLoadForAJAX-Validators="True" PreLoadForAJAX-TextBoxes="True">

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingRadAJAX(RadAjaxManager1);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.Validators);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes);

[VB]

PeterBlum.DES.AJAXManager.UsingRadAJAX(RadAjaxManager1)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

This code goes in Show_ButtonClick():

[C#]

Panel1.Visible = true;

[VB]

Panel1.Visible = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 81 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 4 – Control with Popups first created during Callback

Suppose you have a RadAjaxManager control with GridView that shows a DateTextBox in edit mode. Until the GridView is
in edit mode, the <EditItemTemplate> is not created, requiring a dummy DateTextBox to preload the popups. The
dummy DateTextBox’s popups must have the same properties as the actual DateTextBox. In this case, CssClass is set to a
custom style sheet class. Reminder: The Dummy control must not be updated by the RadAjaxManager or RadAjaxPanel. Try
to get t just below the <form> tag.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
</des:DateTextBox>

<radA:RadAjaxManager id="RadAjaxManager1" runat="server">
<AjaxSettings>
 <rada:AjaxSetting AjaxControlID="GridView1">
 <UpdatedControls>
 <rada:AjaxUpdatedControl ControlID="GridView1"></rada:AjaxUpdatedControl>
 </UpdatedControls>
 </rada:AjaxSetting>
</AjaxSettings>
</radA:RadAjaxManager>

<asp:GridView id="GridView1" runat="server" OnRowCreated="GridView1_RowCreated" >
<Columns>
 <des:CommandField ShowEditButton="True" />
 <asp:TemplateField>
 <ItemTemplate>…</ItemTemplate>
 <EditItemTemplate>

 <des:DateTextBox id="DateTextBox1" runat="server" InAJAXUpdate="true" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
 </des:DateTextBox>

 </EditItemTemplate>
 </asp:TemplateField>
</Columns>
</asp:GridView>

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="TelerikRadAJAX" AJAXControlID="RadAjaxManager1"
PreLoadForAJAX-DateTextBoxes="True" >

</des:PageManager>

This code goes in Page_Load():

[C#]

DummyDTB.PreLoadForAJAX();

[VB]

DummyDTB.PreLoadForAJAX()

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 82 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingRadAJAX(RadAjaxManager1);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes);
DummyDTB.PreLoadForAJAX();

[VB]

PeterBlum.DES.AJAXManager.UsingRadAJAX(RadAjaxManager1)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes)
DummyDTB.PreLoadForAJAX()

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 83 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using other AJAX-enabled Telerik controls
http://www.telerik.com

Telerik’s RadControls are AJAX enabled when they offer the property EnableAJAX.

ALERT: You are virtually guaranteed JavaScript errors and lack of functionality if you do not implement these steps
correctly.

1. For each AJAX-enabled radControl that contains any DES controls or controls pointed to by a DES control, call this
method in Page_Load():

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page,
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts,
 control.IsAjaxRequest)

2. Set the property EnableOutsideScripts to true on the radControl.

3. Identify which DES controls are participating in the AJAX update. Aside from those inside of an AJAX-enabled
RadControl, include those that point to controls involved in AJAX updates. Examples: Validators pointing to data entry
controls, Enabler conditions, FieldStateControllers, CalculationControllers, and NativeControlExtenders.

There are two approaches:

 Quick Setup – Use a single setting to establish that every DES control on the page as involved in the AJAX update
(even if its not). It provides a fast setup but will make AJAX updates perform less than optimally because all DES
controls will transmit their data.

 Optimized Performance – Identify individual controls involved in the AJAX update. Allows only those controls to
transmit their HTML and JavaScript. This can greatly improve performance during a callback.

Recommendation: Use Quick Setup during initial page design. If most or all DES controls are involved in an AJAX
update, retain this set up. Otherwise, switch to the Optimized performance setup.

They are both discussed below.

Quick Setup

When using the PageManager control:

Set the AllInAJAXUpdate property to true.

<des:PageManager runat="server" AllInAJAXUpdate="True" />

Programmatically:

Set the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property to true in Page_Load(). This will
tell all DES controls to transmit their data during each AJAX callback.

PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true

See “Example 1 – Using the AllInAJAXUpdate property for “Quick Setup””.

Optimized performance

Every DES control has the InAJAXUpdate property. Set it to true. For example:

<des:RequiredTextValidator InAJAXUpdate="true" [other properties] />

<des:TextBox InAJAXUpdate="true" [other properties] />

<des:FieldStateController InAJAXUpdate="true" [other properties] />

<des:Button InAJAXUpdate="true" [other properties] />

<des:CalculationController InAJAXUpdate="true" [other properties] />

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

http://www.telerik.com/�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 84 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

See “Example 2 – Identify individual DES Controls for Optimized Performance”.

Visual Studio and Visual Web Developer design mode suggestions:

 Select all DES controls that are in the AJAX update. The Properties Editor will display all properties they have in
common, including InAJAXUpdate. Set it to true to update all at once.

 ASP.NET 2 only. Each DES control has a SmartTag with the setting Involved in an AJAX Update. Mark its
checkbox.

To let the computer do some of the work, use the
PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate() method to update a container control, like a
panel, so that all of its child DES controls have their InAJAXUpdate property set to true. If any DES control points to
another control outside of the container, its InAJAXUpdate property will also be set to true. However, if there is a
DES control outside the container that is not pointed to by a control inside the container, it will still need you to set
InAJAXUpdate. See “PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate”.

To analyze how the InAJAXUpdate property on DES’s controls have been set up, simply set <%@ Page
Trace="True" %>. It will output a list of all relevant DES controls on the page with the value of their
InAJAXUpdate property.

4. If a type of DES control or feature is not initially added to page but will later be added during a callback, it needs to be
identified when the page is initially requested (Page.IsPostBack = false). Examples include a DataGrid or GridView that
switches to edit mode with textboxes and validators; and the Wizard which often does not have data entry controls on the
first step.

When using the PageManager control:

Using the chart below, set the desired property to true on the PageManager.PreLoadForAJAX property. For example:

<des:PageManager runat="server" PreLoadForAJAX-Validators="True"
PreLoadForAJAX-TextBoxes="True" />

Programmatically:

Call PeterBlum.DES.AJAXManager.PreregisterForAJAX().

You pass the enumerated type PeterBlum.DES.AJAXManager.FeatureList, whose values are listed in the
chart below. For example:

PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

Note: It is safe to call PreregisterForAJAX() even when the controls are shown when the page is first generated. All it
does is guarantee scripts are added to the page. If you call it when the controls will never be shown, it adds the overhead
of loading script files and setting up small global objects.

The PreregisterForAJAX() method also accepts an array of FeatureList values like this:

[C#]

using PeterBlum.DES;
...
AJAXManager.FeatureList[] vFeatures =
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes};
AJAXManager.PreregisterForAJAX(vFeatures);

[VB]

Imports PeterBlum.DES
...
Dim vFeatures() As AJAXManager.FeatureList = New AJAXManager.FeatureList() _
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes}
AJAXManager.PreregisterForAJAX(vFeatures)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 85 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

See “Example 3 – Controls added during Callback”.

AJAXManager.FeatureList values and PageManager.PreLoadForAJAX properties

Validators Use when no validator is on the initial page but will be added during a callback.

ValidationSummary Use when no ValidationSummary is on the initial page but will be added during a callback.

CombinedErrorMessages Use when a CombinedErrorMessages control is added on a callback.

TextBoxes Use when no DES TextBox is on the initial page but will be added during a callback. This
includes TextBox, FilteredTextBox, IntegerTextBox, DecimalTextBox, PercentTextBox, and
CurrencyTextBox. Also consider Hints, AutoPostBack.

MultiSegmentDataEntry Use when no MultiSegmentDataEntry control is on the initial page but will be added during
a callback. Also consider Hints.

Hints

(Also when using ToolTips)
Use when no hints are on the initial page but will be used during a callback. This also applies
when using the hint properties on DES’s textboxes and MultiSegmentDataEntry controls.

By default, ToolTips are converted to hints. When using ToolTips, you need to preload the
Hints feature or to turn off the conversion of ToolTips to hints with the ToolTipsAsHints
property on the PageManager control or PeterBlum.DES.Globals.Page.

DateTextBoxes * Use when no DateTextBox, AnniversaryTextBox, or MonthYearTextBox is on the initial
page but will be added during the callback. Also consider Hints, AutoPostBack.

TimeTextBoxes * Use when no TimeOfDayTextBox or DurationTextBox is on the initial page but will be
added during the callback. Also consider Hints, AutoPostBack.

Calendar * Use when no Calendar is on the initial page but will be added during the callback.

MultiSelectionCalendar* Use when no MultiSelectionCalendar is on the initial page but will be added during the
callback.

MonthYearPicker * Use when no MonthYearPicker or PopupMonthYearPicker is on the initial page but will be
added during the callback.

TimePicker * Use when no TimePicker or PopupTimePicker is on the initial page but will be added during
the callback.

SpecialDates Use when no SpecialDates control is on the initial page but will be added during the
callback.

ContextMenu Use when no ContextMenu control is on the initial page but will be added during the
callback.

FieldStateControllers Use when no type of FieldStateController is on the initial page but will be added during a
callback. This includes FieldStateController, MultiFieldStateController, FSCOnCommand,
and MultiFSCOnCommand.

CalculationControllers Use when no CalculationController is on the initial page but will be added during a callback.

TextCounter Use when no TextCounter is on the initial page but will be added during the callback.

AutoPostBack Use when you validate on AutoPostBack.

ChangeMonitor Use when the ChangeMonitor is added to the page after postback.

SubmitControls Use when no Button, LinkButton, or ImageButton is on the initial page but will be added
during the callback.

DisableOnSubmit Use when no Button uses the DisableOnSubmit feature on the initial page but will be used
during a callback.

Popups Use when you create a control using the Popup code.

* The next step is required for these controls.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 86 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

5. For any of the following items from the above chart: DateTextBoxes, TimeTextBoxes, Calendar,
MultiSelectionCalendar, MonthYearPicker, and TimePicker, their popup features must be preloaded
during the initial page load, even though the control itself is not shown until the AJAX update.

Follow these instructions for each type of control that was identified:

 Create a new instance of the control to the page. Put it just after the <form> tag in the web form (aspx) file or at the
beginning of the UserControl. This will avoid having it enclosed in another web control that may have its Visible
property set to false.

<form id="form1" runat="server" >
 <des:DateTextBox id="DummyDTB" runat="server" />
 <asp:othercontrols here />

Make sure this control is always added to the page, even if you are not sure if same type of control will actually be
added during a callback. WARNING: It must be added to the Page’s Control tree before any of the same type
controls that you plan to show in the AJAX panel because its PreRender method must run first. Otherwise, you will
get JavaScript errors after the callback.

 Set up the popup elements on this control the way you want to see them when the control is shown in the browser.
These popups will be written out when the page is first generated.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar propertyname="value" propertyname2="value" />
 </PopupCalendar>
</des:DateTextBox>

 Call the new control’s PreLoadForAJAX() method in Page_Load().

DummyDTB.PreLoadForAJAX()

The call to PreLoadForAJAX()prevents this control from appearing on the page, but DES will use it to preload
the HTML and scripts of its popups.

See “Example 4 – Control with Popups first created during Callback”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 87 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 1 – Using the AllInAJAXUpdate property for “Quick Setup”

Suppose you have a radGrid with a DES TextBox and an associated RequiredTextValidator in a GridTemplateColumn. You
choose the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property because these are the only DES controls
on the page.

<radg:GridTemplateColumn [other properties]>

 <des:TextBox id="TextBox1" runat="server" />
 <des:RequiredTextValidator id="RTV1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

</radg:GridTemplateColumn>

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page,
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts,
 radGrid1.IsAjaxRequest);
radGrid1.EnableOutsideScripts = true;
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true;

[VB]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page, _
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts, _
 radGrid1.IsAjaxRequest)
radGrid1.EnableOutsideScripts = True
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 88 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 2 – Identify individual DES Controls for Optimized Performance

Suppose you have a radGrid with a DES TextBox and an associated RequiredTextValidator in a GridTemplateColumn. You
want to use the InAJAXUpdate property on each DES control in the radGrid because there are other DES controls on the
page.

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

<radg:GridTemplateColumn [other properties]>

 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

</radg:GridTemplateColumn>

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page,
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts,
 radGrid1.IsAjaxRequest);
radGrid1.EnableOutsideScripts = true;

 [VB]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page, _
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts, _
 radGrid1.IsAjaxRequest)
radGrid1.EnableOutsideScripts = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 89 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 3 – Controls added during Callback

Suppose you have a radGrid with a DES TextBox and an associated RequiredTextValidator in a GridTemplateColumn. The
TextBox and Validator controls are not shown until the user invokes Edit mode on the grid, which requires a callback to get
the editing controls.

<radg:GridTemplateColumn [other properties]>

 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

</radg:GridTemplateColumn>

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page,
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts,
 radGrid1.IsAjaxRequest);
radGrid1.EnableOutsideScripts = true;
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.Validators);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes);

[VB]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page, _
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts, _
 radGrid1.IsAjaxRequest)
radGrid1.EnableOutsideScripts = True
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 90 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 4 – Control with Popups first created during Callback

Suppose you have radGrid that shows a DateTextBox in edit mode. Until the radGrid is in edit mode, the
<EditItemTemplate> is not created, requiring a dummy DateTextBox to preload the popups. The dummy
DateTextBox’s popups must have the same properties as the actual DateTextBox. In this case, CssClass is set to a custom
style sheet class.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
</des:DateTextBox>

<radg:RadGrid id="RadGrid1" runat="server" [other properties]>
<Columns>
 <vrg:GridEditCommandColumn [other properties]/>
 <radg:GridTemplateColumn [other properties]>
 <ItemTemplate>…</ItemTemplate>
 <EditItemTemplate>

 <des:DateTextBox id="DateTextBox1" runat="server" InAJAXUpdate="true" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
 </des:DateTextBox>

 </EditItemTemplate>
 </radg:GridTemplateColumn>
</Columns>
</asp:GridView>

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
PreLoadForAJAX-DateTextBoxes="True" >

</des:PageManager>

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page,
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts,
 RadGrid1.IsAjaxRequest);
DummyDTB.PreLoadForAJAX();

[VB]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page, _
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts, _
 RadGrid1.IsAjaxRequest)
DummyDTB.PreLoadForAJAX()

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page,
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts,
 RadGrid1.IsAjaxRequest);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes);
DummyDTB.PreLoadForAJAX();

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 91 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page, _
 PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts, _
 RadGrid1.IsAjaxRequest)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes)
DummyDTB.PreLoadForAJAX()

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 92 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using Infragistics AJAX-enabled Controls
http://www.infragistics.com

ALERT: Peter’s Data Entry Suite was tested with Infragistics NetAdvantage 2006 Q3.

NetAdvantage supplies two controls that can replace HTML: WebAsyncRefreshPanel and UltraWebTab. Both are supported
by the following steps. In addition, any control introduced by Infragistics that offers the IsAsyncPostBack property is
anticipated to work.

ALERT: You are virtually guaranteed JavaScript errors and lack of functionality if you do not implement these steps
correctly.

1. For any page with a WebAsyncRefreshPanel or UltraWebTab that contains or is in some way connected to a DES
control, identify it.

When using the PageManager:

Set AJAXFramework to InfragisticsAJAX and AJAXControlID to the ID of the WebAsyncRefreshPanel or
UltraWebTab. Note that these controls must be in the same naming container. Note: This only supports a single
Infragistics control. If you have more, use the programmatic method below.

<des:PageManager runat="server" AJAXFramework="InfragisticsAJAX"
 AJAXControlID="WebAsyncRefreshPanel" />

Programmatically:

Call this method in Page_Load() for each control:

PeterBlum.DES.AJAXManager.UsingInfragisticsAJAX(WebAsyncRefreshPanel)

PeterBlum.DES.AJAXManager.UsingInfragisticsAJAX(UltraWebTag)

ALERT: For any code that uses the PeterBlum.DES.AJAXManager, it must run every time Page_Load() is
called. Do not nest it inside of an IF statement like If IsPostBack = False Then.

2. Identify which DES controls are participating in the AJAX update. Aside from those inside of an AJAX-enabled control,
include those that point to controls involved in an AJAX update. Examples: Validators pointing to data entry controls,
Enabler conditions, FieldStateControllers, CalculationControllers, and NativeControlExtenders.

There are two approaches:

 Quick Setup – Use a single setting to establish that every DES control on the page as involved in the AJAX update
(even if its not). It provides a fast setup but will make AJAX updates perform less than optimally because all DES
controls will transmit their data.

 Optimized Performance – Identify individual controls involved in the AJAX update. Allows only those controls to
transmit their HTML and JavaScript. This can greatly improve performance during a callback.

Recommendation: Use Quick Setup during initial page design. If most or all DES controls are involved in an AJAX
update, retain this set up. Otherwise, switch to the Optimized performance setup.

They are both discussed below.

Quick Setup

When using the PageManager control:

Set the AllInAJAXUpdate property to true.

<des:PageManager runat="server"
 AJAXFramework="InfragisticsAJAX" AllInAJAXUpdate="True" />

See “Example 1 – Using the AllInAJAXUpdate property for “Quick Setup””.

Programmatically:

Set the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property to true in Page_Load(). This will
tell all DES controls to transmit their data during each AJAX callback.

http://www.infragistics.com/�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 93 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true

Optimized performance

Every DES control has the InAJAXUpdate property. Set it to true. For example:

<des:RequiredTextValidator InAJAXUpdate="true" [other properties] />

<des:TextBox InAJAXUpdate="true" [other properties] />

<des:FieldStateController InAJAXUpdate="true" [other properties] />

<des:Button InAJAXUpdate="true" [other properties] />

<des:CalculationController InAJAXUpdate="true" [other properties] />

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

See “Example 2 – Identify individual DES Controls for Optimized Performance”.

Visual Studio and Visual Web Developer design mode suggestions:

 Select all DES controls that are in the AJAX update. The Properties Editor will display all properties they have in
common, including InAJAXUpdate. Set it to true to update all at once.

 ASP.NET 2 only. Each DES control has a SmartTag with the setting Involved in an AJAX Update. Mark its
checkbox.

To let the computer do some of the work, use the
PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate() method to update a container control, like a
panel, so that all of its child DES controls have their InAJAXUpdate property set to true. If any DES control points to
another control outside of the container, its InAJAXUpdate property will also be set to true. However, if there is a
DES control outside the container that is not pointed to by a control inside the container, it will still need you to set
InAJAXUpdate. See “PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate”.

3. If a type of DES control or feature is not initially added to page but will later be added during a callback, it needs to be
identified when the page is initially requested (Page.IsPostBack = false). Examples include a DataGrid or GridView that
switches to edit mode with textboxes and validators; and the Wizard which often does not have data entry controls on the
first step.

When using the PageManager control:

Using the chart below, set the desired property to true on the PageManager.PreLoadForAJAX property. For example:

<des:PageManager runat="server" PreLoadForAJAX-Validators="True"
PreLoadForAJAX-TextBoxes="True" />

Programmatically:

Call PeterBlum.DES.AJAXManager.PreregisterForAJAX().

You pass the enumerated type PeterBlum.DES.AJAXManager.FeatureList, whose values are listed in the
chart below. For example:

PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

Note: It is safe to call PreregisterForAJAX() even when the controls are shown when the page is first generated. All it
does is guarantee scripts are added to the page. If you call it when the controls will never be shown, it adds the overhead
of loading script files and setting up small global objects.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 94 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

The PreregisterForAJAX() method also accepts an array of FeatureList values like this:

[C#]

using PeterBlum.DES;
...
AJAXManager.FeatureList[] vFeatures =
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes};
AJAXManager.PreregisterForAJAX(vFeatures);

[VB]

Imports PeterBlum.DES
...
Dim vFeatures() As AJAXManager.FeatureList = New AJAXManager.FeatureList() _
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes}
AJAXManager.PreregisterForAJAX(vFeatures)

See “Example 3 – Controls added during Callback”.

AJAXManager.FeatureList values and PageManager.PreLoadForAJAX properties

Validators Use when no validator is on the initial page but will be added during a callback.

ValidationSummary Use when no ValidationSummary is on the initial page but will be added during a
callback.

CombinedErrorMessages Use when a CombinedErrorMessages control is added on a callback.

TextBoxes Use when no DES TextBox is on the initial page but will be added during a callback. This
includes TextBox, FilteredTextBox, IntegerTextBox, DecimalTextBox, PercentTextBox,
and CurrencyTextBox. Also consider Hints, AutoPostBack.

MultiSegmentDataEntry Use when no MultiSegmentDataEntry control is on the initial page but will be added
during a callback. Also consider Hints.

Hints

(Also when using ToolTips)
Use when no hints are on the initial page but will be used during a callback. This also
applies when using the hint properties on DES’s textboxes and MultiSegmentDataEntry
controls.

By default, ToolTips are converted to hints. When using ToolTips, you need to preload
the Hints feature or to turn off the conversion of ToolTips to hints with the
ToolTipsAsHints property on the PageManager control or
PeterBlum.DES.Globals.Page. See “Properties on the
PeterBlum.DES.Globals.Page.HintManager Property” topic in the Interactive Pages
Guide.

DateTextBoxes * Use when no DateTextBox, AnniversaryTextBox, or MonthYearTextBox is on the initial
page but will be added during the callback. Also consider Hints, AutoPostBack.

TimeTextBoxes * Use when no TimeOfDayTextBox or DurationTextBox is on the initial page but will be
added during the callback. Also consider Hints, AutoPostBack.

Calendar * Use when no Calendar is on the initial page but will be added during the callback.

MultiSelectionCalendar* Use when no MultiSelectionCalendar is on the initial page but will be added during the
callback.

MonthYearPicker * Use when no MonthYearPicker or PopupMonthYearPicker is on the initial page but will
be added during the callback.

TimePicker * Use when no TimePicker or PopupTimePicker is on the initial page but will be added
during the callback.

SpecialDates Use when no SpecialDates control is on the initial page but will be added during the
callback.

ContextMenu Use when no ContextMenu control is on the initial page but will be added during the

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 95 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

callback.

FieldStateControllers Use when no type of FieldStateController is on the initial page but will be added during a
callback. This includes FieldStateController, MultiFieldStateController,
FSCOnCommand, and MultiFSCOnCommand.

CalculationControllers Use when no CalculationController is on the initial page but will be added during a
callback.

TextCounter Use when no TextCounter is on the initial page but will be added during the callback.

AutoPostBack Use when you validate on AutoPostBack.

ChangeMonitor Use when the ChangeMonitor is added to the page after postback.

SubmitControls Use when no Button, LinkButton, or ImageButton is on the initial page but will be added
during the callback.

DisableOnSubmit Use when no Button uses the DisableOnSubmit feature on the initial page but will be used
during a callback.

Popups Use when you create a control using the Popup code.

* The next step is required for these controls.

4. For any of the following items from the above chart: DateTextBoxes, TimeTextBoxes, Calendar,
MultiSelectionCalendar, MonthYearPicker, and TimePicker, their popup features must be preloaded
during the initial page load, even though the control itself is not shown until the AJAX update.

Follow these instructions for each type of control that was identified:

 Create a new instance of the control to the page. Put it just after the <form> tag in the web form (aspx) file or at the
beginning of the UserControl. This will avoid having it enclosed in another web control that may have its Visible
property set to false.

<form id="form1" runat="server" >
 <des:DateTextBox id="DummyDTB" runat="server" />
 <asp:othercontrols here />

Make sure this control is always added to the page, even if you are not sure if same type of control will actually be
added during a callback. WARNING: It must be added to the Page’s Control tree before any of the same type
controls that you plan to show in the AJAX panel because its PreRender method must run first. Otherwise, you will
get JavaScript errors after the callback.

 Set up the popup elements on this control the way you want to see them when the control is shown in the browser.
These popups will be written out when the page is first generated.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar propertyname="value" propertyname2="value" />
 </PopupCalendar>
</des:DateTextBox>

 Call the new control’s PreLoadForAJAX() method in Page_Load().

DummyDTB.PreLoadForAJAX()

The call to PreLoadForAJAX()prevents this control from appearing on the page, but DES will use it to preload
the HTML and scripts of its popups.

See “Example 4 – Control with Popups first created during Callback”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 96 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 1 – Using the AllInAJAXUpdate property for “Quick Setup”

Suppose you have a WebAsyncRefreshPanel control that updates a DES TextBox and an associated RequiredTextValidator
when a DES Button is clicked. You choose the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property
because these are the only DES controls on the page.

<igmisc: WebAsyncRefreshPanel id="WebAsyncRefreshPanel1" runat="server">

<des:TextBox id="TextBox1" runat="server" />
<des:RequiredTextValidator id="RTV1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

<des:Button id="Submit" runat="server" Text="Submit" />

</igmisc:WebAsyncRefreshPanel>

When using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="InfragisticsAJAX" AJAXControlID="WebAsyncRefreshPanel1"
AllInAJAXUpdate="True" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingInfragisticsAJAX(WebAsyncRefreshPanel1);
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true;

[VB]

PeterBlum.DES.AJAXManager.UsingInfragisticsAJAX(WebAsyncRefreshPanel1)
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 97 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 2 – Identify individual DES Controls for Optimized Performance

Suppose you have a WebAsyncRefreshPanel control that updates a DES TextBox and an associated RequiredTextValidator
when a DES Button is clicked. You want to use the InAJAXUpdate property on each DES control in the UpdatePanel
because there are other DES controls on the page.

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

<igmisc: WebAsyncRefreshPanel id="WebAsyncRefreshPanel1" runat="server">

<des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
<des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

<des:Button id="Submit" runat="server" Text="Submit" InAJAXUpdate="true" />

</igmisc:WebAsyncRefreshPanel>

When using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="InfragisticsAJAX" AJAXControlID="WebAsyncRefreshPanel1" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingInfragisticsAJAX(WebAsyncRefreshPanel1);
[VB]

PeterBlum.DES.AJAXManager.UsingInfragisticsAJAX(WebAsyncRefreshPanel1)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 98 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 3 – Controls added during Callback

Suppose you have a WebAsyncRefreshPanel control that updates a DES TextBox and an associated RequiredTextValidator
when a DES Button is clicked. The TextBox and Validator controls are inside of a Panel which is Visible=false until the
DES Button sets it to Visible=true during a callback.

<igmisc: WebAsyncRefreshPanel id="WebAsyncRefreshPanel1" runat="server">

<asp:Panel id="Panel1" runat="server" Visible="false">
 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />
</asp:Panel>
<des:Button id="Submit" runat="server" Text="Submit" InAJAXUpdate="true"
 Click="Show_ButtonClick" />

</igmisc:WebAsyncRefreshPanel>

When using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="InfragisticsAJAX" AJAXControlID="WebAsyncRefreshPanel1"
PreLoadForAJAX-Validators="True" PreLoadForAJAX-TextBoxes="True" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingInfragisticsAJAX(WebAsyncRefreshPanel1);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.Validators);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes);

[VB]

PeterBlum.DES.AJAXManager.UsingInfragisticsAJAX(WebAsyncRefreshPanel1)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

This code goes in Show_ButtonClick():

[C#]

Panel1.Visible = true;

[VB]

Panel1.Visible = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 99 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 4 – Control with Popups first created during Callback

Suppose you have a WebAsyncRefreshPanel control with GridView that shows a DateTextBox in edit mode. Until the
GridView is in edit mode, the <EditItemTemplate> is not created, requiring a dummy DateTextBox to preload the
popups. The dummy DateTextBox’s popups must have the same properties as the actual DateTextBox. In this case, CssClass
is set to a custom style sheet class.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
</des:DateTextBox>

<igmisc:WebAsyncRefreshPanel id="WebAsyncRefreshPanel1" runat="server">

 <asp:GridView id="GridView1" runat="server" OnRowCreated="GridView1_RowCreated" >
 <Columns>
 <des:CommandField ShowEditButton="True" />
 <asp:TemplateField>
 <ItemTemplate>…</ItemTemplate>
 <EditItemTemplate>

 <des:DateTextBox id="DateTextBox1" runat="server" InAJAXUpdate="true" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
 </des:DateTextBox>

 </EditItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

</igmisc:WebAsyncRefreshPanel>

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="InfragisticsAJAX" AJAXControlID="WebAsyncRefreshPanel1"
PreLoadForAJAX-DateTextBoxes="True" >

</des:PageManager>

This code goes in Page_Load():

[C#]

DummyDTB.PreLoadForAJAX();

[VB]

DummyDTB.PreLoadForAJAX()

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingInfragisticsAJAX(WebAsyncRefreshPanel1);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes);
DummyDTB.PreLoadForAJAX();

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 100 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

PeterBlum.DES.AJAXManager.UsingInfragisticsAJAX(WebAsyncRefreshPanel1)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes)
DummyDTB.PreLoadForAJAX()

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 101 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using ComponentArt CallBack
http://www.componentart.com/

ALERT: Peter’s Data Entry Suite was tested with ComponentArt 2006 Q1.

ComponentArt CallBack is a control that applies AJAX to controls you provide it within its Callback event handler method.
DES controls are setup in the Callback event handler like others, by calling their RenderControl() method. There is
additional setup required. Use the steps here to correctly setup DES to work with ComponentArt Callback.

ALERT: You are virtually guaranteed JavaScript errors and lack of functionality if you do not implement these steps
correctly.

1. For any page with a ComponentArt CallBack control that contains or is in some way connected to a DES control, identify
it.

When using the PageManager:

Set AJAXFramework to ComponentArtCallback and AJAXControlID to the ID of the CallBack control. Note
that these controls must be in the same naming container. Note: This only supports a single ComponentArt CallBack
control. If you have more, use the programmatic method below.

<des:PageManager runat="server" AJAXFramework="ComponentArtCallback"
 AJAXControlID="CallBackControlID" />

Programmatically:

Call this method in Page_Load() for each CallBack control:

PeterBlum.DES.AJAXManager.UsingComponentArtCallback(CallBackControl)

ALERT: For any code that uses the PeterBlum.DES.AJAXManager, it must run every time Page_Load() is
called. Do not nest it inside of an IF statement like If IsPostBack = False Then.

2. Identify which DES controls are participating in the AJAX update. Aside from those inside of an AJAX-enabled control,
include those that point to controls involved in an AJAX update. Examples: Validators pointing to data entry controls,
Enabler conditions, FieldStateControllers, CalculationControllers, and NativeControlExtenders.

There are two approaches:

 Quick Setup – Use a single setting to establish that every DES control on the page as involved in the AJAX update
(even if its not). It provides a fast setup but will make AJAX updates perform less than optimally because all DES
controls will transmit their data.

 Optimized Performance – Identify individual controls involved in the AJAX update. Allows only those controls to
transmit their HTML and JavaScript. This can greatly improve performance during a callback.

Recommendation: Use Quick Setup during initial page design. If most or all DES controls are involved in an AJAX
update, retain this set up. Otherwise, switch to the Optimized performance setup.

They are both discussed below.

Quick Setup

When using the PageManager control:

Set the AllInAJAXUpdate property to true.

<des:PageManager runat="server"
 AJAXFramework="ComponentArtCallback" AllInAJAXUpdate="True" />

See “Example 1 – Using the AllInAJAXUpdate property for “Quick Setup””

Programmatically:

Set the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property to true in Page_Load(). This will
tell all DES controls to transmit their data during each AJAX callback.

PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true

http://www.componentart.com/�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 102 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Optimized performance

Every DES control has the InAJAXUpdate property. Set it to true. For example:

<des:RequiredTextValidator InAJAXUpdate="true" [other properties] />

<des:TextBox InAJAXUpdate="true" [other properties] />

<des:FieldStateController InAJAXUpdate="true" [other properties] />

<des:Button InAJAXUpdate="true" [other properties] />

<des:CalculationController InAJAXUpdate="true" [other properties] />

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

See “Example 2 – Identify individual DES Controls for Optimized Performance”.

Visual Studio and Visual Web Developer design mode suggestions:

 Select all DES controls that are in the AJAX update. The Properties Editor will display all properties they have in
common, including InAJAXUpdate. Set it to true to update all at once.

 ASP.NET 2 only. Each DES control has a SmartTag with the setting Involved in an AJAX Update. Mark its
checkbox.

To let the computer do some of the work, use the
PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate() method to update a container control, like a
panel, so that all of its child DES controls have their InAJAXUpdate property set to true. If any DES control points to
another control outside of the container, its InAJAXUpdate property will also be set to true. However, if there is a
DES control outside the container that is not pointed to by a control inside the container, it will still need you to set
InAJAXUpdate. See “PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate”.

3. You should already have a Callback event handler defined on your page. It should call the RenderContent() method
of each control it will update with AJAX. In addition, add a call to
PeterBlum.DES.AJAXManager.OutputToComponentArtCallback() at the end, as shown here:

[C#]

private void Callback1_Callback(object sender,
 ComponentArt.Web.UI.CallBackEventArgs e)
{
 DateTextBox1.RenderControl(e.Output);
More controls calling RenderControl

 PeterBlum.DES.AJAXManager.OutputToComponentArtCallback(e.Output);
}

[VB]

Private Sub Callback1_Callback(ByVal sender As Object, _
 ByVal e As ComponentArt.Web.UI.CallBackEventArgs) _
 Handles Callback1.Callback

 DateTextBox1.RenderControl(e.Output)
More controls calling RenderControl

 PeterBlum.DES.AJAXManager.OutputToComponentArtCallback(e.Output)
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 103 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

4. If a type of DES control or feature is not initially added to page but will later be added during a callback, it needs to be
identified when the page is initially requested (Page.IsPostBack = false). Examples include a DataGrid or GridView that
switches to edit mode with textboxes and validators; and the Wizard which often does not have data entry controls on the
first step.

When using the PageManager control:

Using the chart below, set the desired property to true on the PageManager.PreLoadForAJAX property. For example:

<des:PageManager runat="server" PreLoadForAJAX-Validators="True"
PreLoadForAJAX-TextBoxes="True" />

Programmatically:

Call PeterBlum.DES.AJAXManager.PreregisterForAJAX().

You pass the enumerated type PeterBlum.DES.AJAXManager.FeatureList, whose values are listed in the
chart below. For example:

PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

Note: It is safe to call PreregisterForAJAX() even when the controls are shown when the page is first generated. All it
does is guarantee scripts are added to the page. If you call it when the controls will never be shown, it adds the overhead
of loading script files and setting up small global objects.

The PreregisterForAJAX() method also accepts an array of FeatureList values like this:

[C#]

using PeterBlum.DES;
...
AJAXManager.FeatureList[] vFeatures =
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes};
AJAXManager.PreregisterForAJAX(vFeatures);

[VB]

Imports PeterBlum.DES
...
Dim vFeatures() As AJAXManager.FeatureList = New AJAXManager.FeatureList() _
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes}
AJAXManager.PreregisterForAJAX(vFeatures)

See “Example 3 – Controls added during Callback”.

THE CHART OF FEATURES IS ON THE NEXT PAGE

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 104 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

AJAXManager.FeatureList values and PageManager.PreLoadForAJAX properties

Validators Use when no validator is on the initial page but will be added during a callback.

ValidationSummary Use when no ValidationSummary is on the initial page but will be added during a callback.

CombinedErrorMessages Use when a CombinedErrorMessages control is added on a callback.

TextBoxes Use when no DES TextBox is on the initial page but will be added during a callback. This
includes TextBox, FilteredTextBox, IntegerTextBox, DecimalTextBox, PercentTextBox, and
CurrencyTextBox. Also consider Hints, AutoPostBack.

MultiSegmentDataEntry Use when no MultiSegmentDataEntry control is on the initial page but will be added during
a callback. Also consider Hints.

Hints

(Also when using ToolTips)
Use when no hints are on the initial page but will be used during a callback. This also applies
when using the hint properties on DES’s textboxes and MultiSegmentDataEntry controls.

By default, ToolTips are converted to hints. When using ToolTips, you need to preload the
Hints feature or to turn off the conversion of ToolTips to hints with the ToolTipsAsHints
property on the PageManager control or PeterBlum.DES.Globals.Page. See “Properties on
the PeterBlum.DES.Globals.Page.HintManager Property” topic in the Interactive Pages
Guide.

DateTextBoxes * Use when no DateTextBox, AnniversaryTextBox, or MonthYearTextBox is on the initial
page but will be added during the callback. Also consider Hints, AutoPostBack.

TimeTextBoxes * Use when no TimeOfDayTextBox or DurationTextBox is on the initial page but will be
added during the callback. Also consider Hints, AutoPostBack.

Calendar * Use when no Calendar is on the initial page but will be added during the callback.

MultiSelectionCalendar* Use when no MultiSelectionCalendar is on the initial page but will be added during the
callback.

MonthYearPicker * Use when no MonthYearPicker or PopupMonthYearPicker is on the initial page but will be
added during the callback.

TimePicker * Use when no TimePicker or PopupTimePicker is on the initial page but will be added during
the callback.

SpecialDates Use when no SpecialDates control is on the initial page but will be added during the
callback.

ContextMenu Use when no ContextMenu control is on the initial page but will be added during the
callback.

FieldStateControllers Use when no type of FieldStateController is on the initial page but will be added during a
callback. This includes FieldStateController, MultiFieldStateController, FSCOnCommand,
and MultiFSCOnCommand.

CalculationControllers Use when no CalculationController is on the initial page but will be added during a callback.

TextCounter Use when no TextCounter is on the initial page but will be added during the callback.

AutoPostBack Use when you validate on AutoPostBack.

ChangeMonitor Use when the ChangeMonitor is added to the page after postback.

SubmitControls Use when no Button, LinkButton, or ImageButton is on the initial page but will be added
during the callback.

DisableOnSubmit Use when no Button uses the DisableOnSubmit feature on the initial page but will be used
during a callback.

Popups Use when you create a control using the Popup code.

* The next step is required for these controls.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 105 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

5. For any of the following items from the above chart: DateTextBoxes, TimeTextBoxes, Calendar,
MultiSelectionCalendar, MonthYearPicker, and TimePicker, their popup features must be preloaded
during the initial page load, even though the control itself is not shown until the AJAX update.

Follow these instructions for each type of control that was identified:

 Create a new instance of the control to the page. Put it just after the <form> tag in the web form (aspx) file or at the
beginning of the UserControl. This will avoid having it enclosed in another web control that may have its Visible
property set to false.

<form id="form1" runat="server" >
 <des:DateTextBox id="DummyDTB" runat="server" />
 <asp:othercontrols here />

Make sure this control is always added to the page, even if you are not sure if same type of control will actually be
added during a callback. WARNING: It must be added to the Page’s Control tree before any of the same type
controls that you plan to show in the AJAX panel because its PreRender method must run first. Otherwise, you will
get JavaScript errors after the callback.

 Set up the popup elements on this control the way you want to see them when the control is shown in the browser.
These popups will be written out when the page is first generated.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar propertyname="value" propertyname2="value" />
 </PopupCalendar>
</des:DateTextBox>

 Call the new control’s PreLoadForAJAX() method in Page_Load().

DummyDTB.PreLoadForAJAX()

The call to PreLoadForAJAX()prevents this control from appearing on the page, but DES will use it to preload
the HTML and scripts of its popups.

See “Example 4 – Control with Popups first created during Callback”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 106 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 1 – Using the AllInAJAXUpdate property for “Quick Setup”

Suppose you have a ComponentArt CallBack control that updates a DES TextBox and an associated RequiredTextValidator
when a DES Button is clicked. You choose the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property
because these are the only DES controls on the page.

<componentart:CallBack id="CallBack1" runat="server">
<content>

<des:TextBox id="TextBox1" runat="server" />
<des:RequiredTextValidator id="RTV1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

<des:Button id="Submit" runat="server" Text="Submit" />

</content>
</componentart:CallBack>

When using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="ComponentArtCallback" AJAXControlID="CallBack1"
AllInAJAXUpdate="True" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingComponentArtCallback(CallBack1);
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true;

[VB]

PeterBlum.DES.AJAXManager.UsingComponentArtCallback(CallBack1)
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = True

The Callback Event Handler Method:

[C#]

private void Callback1_Callback(object sender,
 ComponentArt.Web.UI.CallBackEventArgs e)
{
 TextBox1.RenderControl(e.Output);
 RTV1.RenderControl(e.Output);
 Button1.RenderControl(e.Output);

 PeterBlum.DES.AJAXManager.OutputToComponentArtCallback(e.Output);
}

[VB]

Private Sub Callback1_Callback(ByVal sender As Object, _
 ByVal e As ComponentArt.Web.UI.CallBackEventArgs) _
 Handles Callback1.Callback

 TextBox1.RenderControl(e.Output)
 RTV1.RenderControl(e.Output)
 Button1.RenderControl(e.Output)

 PeterBlum.DES.AJAXManager.OutputToComponentArtCallback(e.Output)
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 107 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 2 – Identify individual DES Controls for Optimized Performance

Suppose you have a ComponentArt CallBack control that updates a DES TextBox and an associated RequiredTextValidator
when a DES Button is clicked. You want to use the InAJAXUpdate property on each DES control in the CallBack control
because there are other DES controls on the page.

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

<componentart:CallBack id="CallBack1" runat="server">
<content>

<des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
<des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

<des:Button id="Submit" runat="server" Text="Submit" InAJAXUpdate="true" />

</content>
</componentart:CallBack>

When using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="ComponentArtCallback" AJAXControlID="CallBack1" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingComponentArtCallback(CallBack1);
[VB]

PeterBlum.DES.AJAXManager.UsingComponentArtCallback(CallBack1)

The Callback Event Handler Method:

[C#]

private void Callback1_Callback(object sender,
 ComponentArt.Web.UI.CallBackEventArgs e)
{
 TextBox1.RenderControl(e.Output);
 RTV1.RenderControl(e.Output);
 Button1.RenderControl(e.Output);

 PeterBlum.DES.AJAXManager.OutputToComponentArtCallback(e.Output);
}

[VB]

Private Sub Callback1_Callback(ByVal sender As Object, _
 ByVal e As ComponentArt.Web.UI.CallBackEventArgs) _
 Handles Callback1.Callback

 TextBox1.RenderControl(e.Output)
 RTV1.RenderControl(e.Output)
 Button1.RenderControl(e.Output)

 PeterBlum.DES.AJAXManager.OutputToComponentArtCallback(e.Output)
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 108 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 3 – Controls added during Callback

Suppose you have a ComponentArt CallBack control that updates a DES TextBox and an associated RequiredTextValidator
when a DES Button is clicked. The TextBox and Validator controls are inside of a Panel which is Visible=false until the
DES Button sets it to Visible=true during a callback.

<componentart:CallBack id="CallBack1" runat="server">
<content>

 <asp:Panel id="Panel1" runat="server" Visible="false">
 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />
 </asp:Panel>
 <des:Button id="Submit" runat="server" Text="Submit" InAJAXUpdate="true"
 Click="Show_ButtonClick" />

</content>
</componentart:CallBack>

When using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="ComponentArtCallback" AJAXControlID="CallBack1"
PreLoadForAJAX-Validators="True" PreLoadForAJAX-TextBoxes="True" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingComponentArtCallback(CallBack1);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.Validators);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes);

[VB]

PeterBlum.DES.AJAXManager.UsingComponentArtCallback(CallBack1)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

This code goes in Show_ButtonClick():

[C#]

Panel1.Visible = true;

[VB]

Panel1.Visible = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 109 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

The Callback Event Handler Method:

[C#]

private void Callback1_Callback(object sender,
 ComponentArt.Web.UI.CallBackEventArgs e)
{
 Panel1.RenderControl(e.Output); // updates TextBox1 and RTV1
 Button1.RenderControl(e.Output);

 PeterBlum.DES.AJAXManager.OutputToComponentArtCallback(e.Output);
}

[VB]

Private Sub Callback1_Callback(ByVal sender As Object, _
 ByVal e As ComponentArt.Web.UI.CallBackEventArgs) _
 Handles Callback1.Callback

 Panel1.RenderControl(e.Output) ' updates TextBox1 and RTV1
 Button1.RenderControl(e.Output)

 PeterBlum.DES.AJAXManager.OutputToComponentArtCallback(e.Output)
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 110 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 4 – Control with Popups first created during Callback

Suppose you have a ComponentArt CallBack control with GridView that shows a DateTextBox in edit mode. Until the
GridView is in edit mode, the <EditItemTemplate> is not created, requiring a dummy DateTextBox to preload the
popups. The dummy DateTextBox’s popups must have the same properties as the actual DateTextBox. In this case, CssClass
is set to a custom style sheet class.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
</des:DateTextBox>

<componentart:CallBack id="CallBack1" runat="server">
<content>

 <asp:GridView id="GridView1" runat="server" OnRowCreated="GridView1_RowCreated" >
 <Columns>
 <des:CommandField ShowEditButton="True" />
 <asp:TemplateField>
 <ItemTemplate>…</ItemTemplate>
 <EditItemTemplate>

 <des:DateTextBox id="DateTextBox1" runat="server" InAJAXUpdate="true" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
 </des:DateTextBox>

 </EditItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

</content>
</componentart:CallBack>

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="ComponentArtCallback" AJAXControlID="CallBack1"
PreLoadForAJAX-DateTextBoxes="True" >

</des:PageManager>

This code goes in Page_Load():

[C#]

DummyDTB.PreLoadForAJAX();

[VB]

DummyDTB.PreLoadForAJAX()

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingComponentArtCallback(CallBack1);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes);
DummyDTB.PreLoadForAJAX();

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 111 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

PeterBlum.DES.AJAXManager.UsingComponentArtCallback(CallBack1)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes)
DummyDTB.PreLoadForAJAX()

The Callback Event Handler Method:

[C#]

private void Callback1_Callback(object sender,
 ComponentArt.Web.UI.CallBackEventArgs e)
{
 GridView1.RenderControl(e.Output);

 PeterBlum.DES.AJAXManager.OutputToComponentArtCallback(e.Output);
}

[VB]

Private Sub Callback1_Callback(ByVal sender As Object, _
 ByVal e As ComponentArt.Web.UI.CallBackEventArgs) _
 Handles Callback1.Callback

 GridView1.RenderControl(e.Output)

 PeterBlum.DES.AJAXManager.OutputToComponentArtCallback(e.Output)
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 112 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using MagicAjax
http://www.magicajax.net

ALERT: Peter’s Data Entry Suite was built with MagicAjax 0.3.0. Since this is a prerelease product, it’s possible that later
releases will not work with DES. (It is likely that DES can be fixed to address such changes.)

MagicAjax supplies the AjaxPanel control to replace HTML.

ALERT: You are virtually guaranteed JavaScript errors and lack of functionality if you do not implement these steps
correctly.

1. For each AjaxPanel that contains any DES controls or controls pointed to by a DES control, identify it.

When using the PageManager:

Set AJAXFramework to InfragisticsAJAX and AJAXControlID to the ID of the WebAsyncRefreshPanel or
UltraWebTab. Note that these controls must be in the same naming container. Note: This only supports a single
AjaxPanel control. If you have more, use the programmatic method below.

<des:PageManager runat="server"
 AJAXFramework="MagicAJAX" AJAXControlID="AjaxPanel" />

Programmatically:

Call this method in Page_Load():

PeterBlum.DES.AJAXManager.UsingMagicAjax(ajaxpanel)

ALERT: For any code that uses the PeterBlum.DES.AJAXManager, it must run every time Page_Load() is
called. Do not nest it inside of an IF statement like If IsPostBack = False Then.

2. Identify which DES controls are participating in the AJAX update. Aside from those inside of an AJAXPanel, include
those that point to controls inside of AJAXPanels. Examples: Validators pointing to data entry controls, Enabler
conditions, FieldStateControllers, CalculationControllers, and NativeControlExtenders.

There are two approaches:

 Quick Setup – Use a single setting to establish that every DES control on the page as involved in the AJAX update
(even if its not). It provides a fast setup but will make AJAX updates perform less than optimally because all DES
controls will transmit their data.

 Optimized Performance – Identify individual controls involved in the AJAX update. Allows only those controls to
transmit their HTML and JavaScript. This can greatly improve performance during a callback.

Recommendation: Use Quick Setup during initial page design. If most or all DES controls are involved in an AJAX
update, retain this set up. Otherwise, switch to the Optimized performance setup.

They are both discussed below.

Quick Setup

When using the PageManager control:

Set the AllInAJAXUpdate property to true.

<des:PageManager runat="server"
 AJAXFramework="MicrosoftAJAX" AllInAJAXUpdate="True" />

Programmatically:

Set the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property to true in Page_Load(). This will
tell all DES controls to transmit their data during each AJAX callback.

PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true

See “Example 1 – Using the AllInAJAXUpdate property for “Quick Setup””.

http://www.magicajax.net/�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 113 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Optimized performance

Every DES control has the InAJAXUpdate property. Set it to true. For example:

<des:RequiredTextValidator InAJAXUpdate="true" [other properties] />

<des:TextBox InAJAXUpdate="true" [other properties] />

<des:FieldStateController InAJAXUpdate="true" [other properties] />

<des:Button InAJAXUpdate="true" [other properties] />

<des:CalculationController InAJAXUpdate="true" [other properties] />

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

See “Example 2 – Identify individual DES Controls for Optimized Performance”.

Visual Studio and Visual Web Developer design mode suggestions:

 Select all DES controls that are in the AJAX update. The Properties Editor will display all properties they have in
common, including InAJAXUpdate. Set it to true to update all at once.

 ASP.NET 2 only. Each DES control has a SmartTag with the setting Involved in an AJAX Update. Mark its
checkbox.

To let the computer do some of the work, use the
PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate() method to update a container control, like a
panel, so that all of its child DES controls have their InAJAXUpdate property set to true. If any DES control points to
another control outside of the container, its InAJAXUpdate property will also be set to true. However, if there is a
DES control outside the container that is not pointed to by a control inside the container, it will still need you to set
InAJAXUpdate. See “PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate”.

3. If a type of DES control or feature is not initially added to page but will later be added during a callback, it needs to be
identified when the page is initially requested (Page.IsPostBack = false). Examples include a DataGrid or GridView that
switches to edit mode with textboxes and validators; and the Wizard which often does not have data entry controls on the
first step.

When using the PageManager control:

Using the chart below, set the desired property to true on the PageManager.PreLoadForAJAX property. For example:

<des:PageManager runat="server" PreLoadForAJAX-Validators="True"
PreLoadForAJAX-TextBoxes="True" />

Programmatically:

Call PeterBlum.DES.AJAXManager.PreregisterForAJAX().

You pass the enumerated type PeterBlum.DES.AJAXManager.FeatureList, whose values are listed in the
chart below. For example:

PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

Note: It is safe to call PreregisterForAJAX() even when the controls are shown when the page is first generated. All it
does is guarantee scripts are added to the page. If you call it when the controls will never be shown, it adds the overhead
of loading script files and setting up small global objects.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 114 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

The PreregisterForAJAX() method also accepts an array of FeatureList values like this:

[C#]

using PeterBlum.DES;
...
AJAXManager.FeatureList[] vFeatures =
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes};
AJAXManager.PreregisterForAJAX(vFeatures);

[VB]

Imports PeterBlum.DES
...
Dim vFeatures() As AJAXManager.FeatureList = New AJAXManager.FeatureList() _
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes}
AJAXManager.PreregisterForAJAX(vFeatures)

See “Example 3 – Controls added during Callback”.

AJAXManager.FeatureList values and PageManager.PreLoadForAJAX properties

Validators Use when no validator is on the initial page but will be added during a callback.

ValidationSummary Use when no ValidationSummary is on the initial page but will be added during a
callback.

CombinedErrorMessages Use when a CombinedErrorMessages control is added on a callback.

TextBoxes Use when no DES TextBox is on the initial page but will be added during a callback. This
includes TextBox, FilteredTextBox, IntegerTextBox, DecimalTextBox, PercentTextBox,
and CurrencyTextBox. Also consider Hints, AutoPostBack.

MultiSegmentDataEntry Use when no MultiSegmentDataEntry control is on the initial page but will be added
during a callback. Also consider Hints.

Hints

(Also when using ToolTips)
Use when no hints are on the initial page but will be used during a callback. This also
applies when using the hint properties on DES’s textboxes and MultiSegmentDataEntry
controls.

By default, ToolTips are converted to hints. When using ToolTips, you need to preload
the Hints feature or to turn off the conversion of ToolTips to hints with the
ToolTipsAsHints property on the PageManager control or
PeterBlum.DES.Globals.Page. See “Properties on the
PeterBlum.DES.Globals.Page.HintManager Property” topic in the Interactive Pages
Guide.

DateTextBoxes * Use when no DateTextBox, AnniversaryTextBox, or MonthYearTextBox is on the initial
page but will be added during the callback. Also consider Hints, AutoPostBack.

TimeTextBoxes * Use when no TimeOfDayTextBox or DurationTextBox is on the initial page but will be
added during the callback. Also consider Hints, AutoPostBack.

Calendar * Use when no Calendar is on the initial page but will be added during the callback.

MultiSelectionCalendar* Use when no MultiSelectionCalendar is on the initial page but will be added during the
callback.

MonthYearPicker * Use when no MonthYearPicker or PopupMonthYearPicker is on the initial page but will
be added during the callback.

TimePicker * Use when no TimePicker or PopupTimePicker is on the initial page but will be added
during the callback.

SpecialDates Use when no SpecialDates control is on the initial page but will be added during the
callback.

ContextMenu Use when no ContextMenu control is on the initial page but will be added during the

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 115 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

callback.

FieldStateControllers Use when no type of FieldStateController is on the initial page but will be added during a
callback. This includes FieldStateController, MultiFieldStateController,
FSCOnCommand, and MultiFSCOnCommand.

CalculationControllers Use when no CalculationController is on the initial page but will be added during a
callback.

TextCounter Use when no TextCounter is on the initial page but will be added during the callback.

AutoPostBack Use when you validate on AutoPostBack.

ChangeMonitor Use when the ChangeMonitor is added to the page after postback.

SubmitControls Use when no Button, LinkButton, or ImageButton is on the initial page but will be added
during the callback.

DisableOnSubmit Use when no Button uses the DisableOnSubmit feature on the initial page but will be used
during a callback.

Popups Use when you create a control using the Popup code.

* The next step is required for these controls.

4. For any of the following items from the above chart: DateTextBoxes, TimeTextBoxes, Calendar,
MultiSelectionCalendar, MonthYearPicker, and TimePicker, their popup features must be preloaded
during the initial page load, even though the control itself is not shown until the AJAX update.

Follow these instructions for each type of control that was identified:

 Create a new instance of the control to the page. Put it just after the <form> tag in the web form (aspx) file or at the
beginning of the UserControl. This will avoid having it enclosed in another web control that may have its Visible
property set to false.

<form id="form1" runat="server" >
 <des:DateTextBox id="DummyDTB" runat="server" />
 <asp:othercontrols here />

Make sure this control is always added to the page, even if you are not sure if same type of control will actually be
added during a callback. WARNING: It must be added to the Page’s Control tree before any of the same type
controls that you plan to show in the AJAX panel because its PreRender method must run first. Otherwise, you will
get JavaScript errors after the callback.

 Set up the popup elements on this control the way you want to see them when the control is shown in the browser.
These popups will be written out when the page is first generated.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar propertyname="value" propertyname2="value" />
 </PopupCalendar>
</des:DateTextBox>

 Call the new control’s PreLoadForAJAX() method in Page_Load().

DummyDTB.PreLoadForAJAX()

The call to PreLoadForAJAX()prevents this control from appearing on the page, but DES will use it to preload
the HTML and scripts of its popups.

See “Example 4 – Control with Popups first created during Callback”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 116 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 1 – Using the AllInAJAXUpdate property for “Quick Setup”

Suppose you have an AjaxPanel with a DES TextBox, an associated RequiredTextValidator, and a DES Button. You choose
the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property because these are the only DES controls on the
page.

<ajax:ajaxpanel id="AjaxPanel1" runat="server">

 <des:TextBox id="TextBox1" runat="server" />
 <des:RequiredTextValidator id="RTV1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

 <des:Button id="Submit" runat="server" Text="Submit" />

</ajax:ajaxpanel>

When using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="MagicAJAX" AJAXControlID="AjaxPanel1"
AllInAJAXUpdate="True" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingMagicAjax(AjaxPanel1);
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true;

[VB]

PeterBlum.DES.AJAXManager.UsingMagicAjax(AjaxPanel1)
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 117 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 2 – Identify individual DES Controls for Optimized Performance

Suppose you have an AjaxPanel with a DES TextBox, an associated RequiredTextValidator, and a DES Button. You want to
use the InAJAXUpdate property on each DES control in the AjaxPanel because there are other DES controls on the page.

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

<ajax:ajaxpanel id="AjaxPanel1" runat="server">

 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

 <des:Button id="Submit" runat="server" Text="Submit" InAJAXUpdate="true" />

</ajax:ajaxpanel>

When using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="MagicAJAX" AJAXControlID="AjaxPanel1" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingMagicAjax(AjaxPanel1);

[VB]

PeterBlum.DES.AJAXManager.UsingMagicAjax(AjaxPanel1)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 118 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 3 – Controls added during Callback

Suppose you have an AjaxPanel with a DES TextBox, an associated RequiredTextValidator, and a DES Button. The TextBox
and Validator controls are inside of a Panel which is Visible=false until the DES Button sets it to Visible=true during a
callback.

<ajax:ajaxpanel id="AjaxPanel1" runat="server">

 <asp:Panel id="Panel1" runat="server" Visible="false">
 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

 </asp:Panel>
 <des:Button id="Show" runat="server" Text="Submit" InAJAXUpdate="true"
 Click="Show_ButtonClick" />

</ajax:ajaxpanel>

When using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="MagicAJAX" AJAXControlID="AjaxPanel1"
PreLoadForAJAX-Validators="True" PreLoadForAJAX-TextBoxes="True" >

</des:PageManager>

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingMagicAjax(AjaxPanel1);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.Validators);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes);

[VB]

PeterBlum.DES.AJAXManager.UsingMagicAjax(AjaxPanel1)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

This code goes in Show_ButtonClick():

[C#]

Panel1.Visible = true;

[VB]

Panel1.Visible = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 119 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 4 – Control with Popups first created during Callback

Suppose you have an AjaxPanel with GridView that shows a DateTextBox in edit mode. Until the GridView is in edit mode,
the <EditItemTemplate> is not created, requiring a dummy DateTextBox to preload the popups. The dummy
DateTextBox’s popups must have the same properties as the actual DateTextBox. In this case, CssClass is set to a custom
style sheet class. Reminder: The Dummy control must not be inside the AjaxPanel. Try to get it just below the <form> tag.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
</des:DateTextBox>
<ajax:ajaxpanel id="AjaxPanel1" runat="server">

 <asp:GridView id="GridView1" runat="server" OnRowCreated="GridView1_RowCreated" >
 <Columns>
 <des:CommandField ShowEditButton="True" />
 <asp:TemplateField>
 <ItemTemplate>…</ItemTemplate>
 <EditItemTemplate>

 <des:DateTextBox id="DateTextBox1" runat="server" InAJAXUpdate="true" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
 </des:DateTextBox>

 </EditItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

</ajax:ajaxpanel>

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
AJAXFramework="MagicAJAX" AJAXControlID="AjaxPanel1"
PreLoadForAJAX-DateTextBoxes="True" >

</des:PageManager>

This code goes in Page_Load():

[C#]

DummyDTB.PreLoadForAJAX();

[VB]

DummyDTB.PreLoadForAJAX()

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingMagicAjax(AjaxPanel1);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes);
DummyDTB.PreLoadForAJAX();

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 120 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

PeterBlum.DES.AJAXManager.UsingMagicAjax(AjaxPanel1)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes)
DummyDTB.PreLoadForAJAX()

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 121 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using other AJAX Products
Peter’s Data Entry Suite supplies the method PeterBlum.DES.AJAXManager.UsingAJAXUpdates() to handle
AJAX frameworks not directly supported in the previous sections.

1. For each control that contains any DES controls or controls pointed to by a DES control, call the
PeterBlum.DES.AJAXManager.UsingAJAXUpdates() method in Page_Load(). Here is the definition of
that method.

[C#]

static void UsingAJAXUpdates(Page page,
 PeterBlum.DES.AJAXManager.AJAXSystemType systemType,
 bool inCallback)

[VB]

Shared Sub UsingAJAXUpdates(ByVal page As Page, _
 ByVal systemType As PeterBlum.DES.AJAXManager.AJAXSystemType, _
 ByVal inCallback As Boolean)

Parameters

page

The Page object that contains these controls.

systemType

Defines how the AJAX system collects and processes JavaScript within a callback. It may require some
experimentation to determine which of these work with your AJAX system. If none of them work, you will not
be able to use DES controls with in that AJAX system’s control.

To assist you, DES can show alerts during callbacks to show you that its functions are being called. Add this
script immediately after your <form> tag:

<script language="javascript">
var gDESDebugAJAX = true;
</script>

Suggestion: Create a new web form designed to test the AJAX system. Add only a DES TextBox, a
RequiredTextValidator, the AJAX system control, and a DES Button to invoke the callback.

Once you determine how to use your AJAX system, please contact Peter at contact@peterblum.com to report
your findings. This will allow Peter to provide support for that AJAX system.

The enumerated type PeterBlum.DES.AJAXManager.AJAXSystemType has these values:

 RegisterScripts – The third party AJAX system automatically collects scripts that were added into
the RegisterStartupScript() and RegisterClientScriptBlock() methods found on the
Page (ASP.NET 1.x) or Page.ClientScript (ASP.NET 2.0) object.

Note: This technique is used in some second generation AJAX systems, including Microsoft AJAX Library,
Atlas and RadAJAX.

 EmbedScriptsUseFinish – The third party AJAX system can execute scripts that are embedded inside
the HTML block that it replaces. It also has a property that accepts JavaScript, which is run when the
callback is completed. When EmbedScriptsUseFinish is used, call
PeterBlum.DES.AJAXManager.GetFinishScript() to get JavaScript code. Assign the code to
the property that runs JavaScript when the callback is completed. GetFinishScript() takes one
parameter, a Boolean. When true, the call is made after all validators have been created on the page. When
false, there may be additional validators created. Generally you call GetFinishScript() at the end of
Page_Load() when IsPostBack=false and at the end of your post back event handlers when
IsPostBack=true. This allows the best opportunity for all validators to be established, so that you can pass
true as the parameter.

mailto:contact@peterblum.com�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 122 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example

Suppose the AJAX framework uses a control called AjaxPanel. The AjaxPanel class has a property called
ScriptsToRun that accepts JavaScript to be run when the callback is completed. Your page has an instance
of AjaxPanel called AjaxPanel1.

The code shown here is called as the last line in Page_Load() after testing Page.IsPostBack=false. It
should also be used as the last line of the post back event handlers.

[C#]

 AjaxPanel1.ScriptsToRun = PeterBlum.DES.AJAXManager.GetFinishScript(true);

[VB]

 AjaxPanel1.ScriptsToRun = PeterBlum.DES.AJAXManager.GetFinishScript(True)

 EmbedScripts - The third party AJAX system can execute scripts that are embedded inside the HTML
block that it replaces. It does not have a way to execute your JavaScript when the callback is completed.
This AJAX system type has a key limitation: if the AJAX system executes the scripts as it adds the web
control’s HTML into the page, that script may be run too early. Often these scripts depend not only on the
presence of the web control itself, but another control to initialize with it. All of these controls must have
their HTML on the page before the script runs. (EmbedScriptsUseFinish is preferred, because it
allows you to declare that all HTML is now on the page before running the initialization code.)

 GetScriptsAtEnd – The third party control has a way to get JavaScript after the PreRender phase of the
controls its updating has run. DES will collect all of the scripts into a string during PreRender. After that is
done, call the following method to retrieve the JavaScript code as a string that you pass to the AJAX system:

 PeterBlum.DES.AJAXManager.GetCachedScripts()

The GetCachedScripts() method returns a string containing the JavaScript.

There are a few ways to get the scripts at the after PreRender runs on the DES controls.

o The AJAX system fires an event handler when it’s ready to get the scripts. Use that event handler to
call GetCachedScripts().

o ASP.NET 2.0 only. The AJAX system can wait until the entire page’s OnPreRender process is complete
before getting the scripts. Use the OnPreRenderComplete event on the Page object to call
GetCachedScripts().

o This is not an exhaustive list. There may be other solutions.

inCallback

Each AJAX system should provide a way to determine if the server side code is executing during a callback. Use
that value to set this parameter. When true, the server side code is in a callback. When false, it is not.

ALERT: For any code that uses the PeterBlum.DES.AJAXManager, it must run every time Page_Load() is
called. Do not nest it inside of an IF statement like If IsPostBack = False Then.

2. Identify which DES controls are participating in the AJAX update. Aside from those directly updated, include those that
point to controls being updated. Examples: Validators pointing to data entry controls, Enabler conditions,
FieldStateControllers, CalculationControllers, and NativeControlExtenders.

There are two approaches:

 Quick Setup – Use a single setting to establish that every DES control on the page as involved in the AJAX update
(even if its not). It provides a fast setup but will make AJAX updates perform less than optimally because all DES
controls will transmit their data.

 Optimized Performance – Identify individual controls involved in the AJAX update. Allows only those controls to
transmit their HTML and JavaScript. This can greatly improve performance during a callback.

Recommendation: Use Quick Setup during initial page design. If most or all DES controls are involved in an AJAX
update, retain this set up. Otherwise, switch to the Optimized performance setup.

http://msdn2.microsoft.com/en-us/library/system.web.ui.page.onprerendercomplete.aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 123 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

They are both discussed below.

Quick Setup

Set the PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property to true in Page_Load(). This will
tell all DES controls to transmit their data during each AJAX callback.

PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true

See “Example 1 – Using the AllInAJAXUpdate property for “Quick Setup””.

Optimized performance

Every DES control has the InAJAXUpdate property. Set it to true. For example:

<des:RequiredTextValidator InAJAXUpdate="true" [other properties] />

<des:TextBox InAJAXUpdate="true" [other properties] />

<des:FieldStateController InAJAXUpdate="true" [other properties] />

<des:Button InAJAXUpdate="true" [other properties] />

<des:CalculationController InAJAXUpdate="true" [other properties] />

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

See “Example 2 – Identify individual DES Controls for Optimized Performance”.

Visual Studio and Visual Web Developer design mode suggestions:

 Select all DES controls that are in the AJAX update. The Properties Editor will display all properties they have in
common, including InAJAXUpdate. Set it to true to update all at once.

 ASP.NET 2 only. Each DES control has a SmartTag with the setting Involved in an AJAX Update. Mark its
checkbox.

To let the computer do some of the work, use the
PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate() method to update a container control, like a
panel, so that all of its child DES controls have their InAJAXUpdate property set to true. If any DES control points to
another control outside of the container, its InAJAXUpdate property will also be set to true. However, if there is a
DES control outside the container that is not pointed to by a control inside the container, it will still need you to set
InAJAXUpdate. See “PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate”.

3. If a type of DES control or feature is not initially added to page but will later be added during a callback, it needs to be
identified when the page is initially requested (Page.IsPostBack = false). Examples include a DataGrid or GridView that
switches to edit mode with textboxes and validators; and the Wizard which often does not have data entry controls on the
first step.

Call PeterBlum.DES.AJAXManager.PreregisterForAJAX().

You pass the enumerated type PeterBlum.DES.AJAXManager.FeatureList, whose values are listed in the
chart below. For example:

PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

Note: It is safe to call PreregisterForAJAX() even when the controls are shown when the page is first generated. All it
does is guarantee scripts are added to the page. If you call it when the controls will never be shown, it adds the overhead
of loading script files and setting up small global objects.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 124 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

The PreregisterForAJAX() method also accepts an array of FeatureList values like this:

[C#]

using PeterBlum.DES;
...
AJAXManager.FeatureList[] vFeatures =
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes};
AJAXManager.PreregisterForAJAX(vFeatures);

[VB]

Imports PeterBlum.DES
...
Dim vFeatures() As AJAXManager.FeatureList = New AJAXManager.FeatureList() _
 {AJAXManager.FeatureList.Validators, AJAXManager.FeatureList.TextBoxes}
AJAXManager.PreregisterForAJAX(vFeatures)

See “Example 3 – Controls added during Callback”.

AJAXManager.FeatureList values and PageManager.PreLoadForAJAX properties

Validators Use when no validator is on the initial page but will be added during a callback.

ValidationSummary Use when no ValidationSummary is on the initial page but will be added during a
callback.

CombinedErrorMessages Use when a CombinedErrorMessages control is added on a callback.

TextBoxes Use when no DES TextBox is on the initial page but will be added during a callback. This
includes TextBox, FilteredTextBox, IntegerTextBox, DecimalTextBox, PercentTextBox,
and CurrencyTextBox. Also consider Hints, AutoPostBack.

MultiSegmentDataEntry Use when no MultiSegmentDataEntry control is on the initial page but will be added
during a callback. Also consider Hints.

Hints

(Also when using ToolTips)
Use when no hints are on the initial page but will be used during a callback. This also
applies when using the hint properties on DES’s textboxes and MultiSegmentDataEntry
controls.

By default, ToolTips are converted to hints. When using ToolTips, you need to preload
the Hints feature or to turn off the conversion of ToolTips to hints with the
ToolTipsAsHints property on the PageManager control or
PeterBlum.DES.Globals.Page. See “Properties on the
PeterBlum.DES.Globals.Page.HintManager Property” topic in the Interactive Pages
Guide.

DateTextBoxes * Use when no DateTextBox, AnniversaryTextBox, or MonthYearTextBox is on the initial
page but will be added during the callback. Also consider Hints, AutoPostBack.

TimeTextBoxes * Use when no TimeOfDayTextBox or DurationTextBox is on the initial page but will be
added during the callback. Also consider Hints, AutoPostBack.

alendar * Use when no Calendar is on the initial page but will be added during the callback.

MultiSelectionCalendar* Use when no MultiSelectionCalendar is on the initial page but will be added during the
callback.

MonthYearPicker * Use when no MonthYearPicker or PopupMonthYearPicker is on the initial page but will
be added during the callback.

TimePicker * Use when no TimePicker or PopupTimePicker is on the initial page but will be added
during the callback.

SpecialDates Use when no SpecialDates control is on the initial page but will be added during the
callback.

ContextMenu Use when no ContextMenu control is on the initial page but will be added during the

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 125 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

callback.

FieldStateControllers Use when no type of FieldStateController is on the initial page but will be added during a
callback. This includes FieldStateController, MultiFieldStateController,
FSCOnCommand, and MultiFSCOnCommand.

CalculationControllers Use when no CalculationController is on the initial page but will be added during a
callback.

TextCounter Use when no TextCounter is on the initial page but will be added during the callback.

AutoPostBack Use when you validate on AutoPostBack.

ChangeMonitor Use when the ChangeMonitor is added to the page after postback.

SubmitControls Use when no Button, LinkButton, or ImageButton is on the initial page but will be added
during the callback.

DisableOnSubmit Use when no Button uses the DisableOnSubmit feature on the initial page but will be used
during a callback.

Popups Use when you create a control using the Popup code.

* The next step is required for these controls.

4. For any of the following items from the above chart: DateTextBoxes, TimeTextBoxes, Calendar,
MultiSelectionCalendar, MonthYearPicker, and TimePicker, their popup features must be preloaded
during the initial page load, even though the control itself is not shown until the AJAX update.

Follow these instructions for each type of control that was identified:

 Create a new instance of the control to the page. Put it just after the <form> tag in the web form (aspx) file or at the
beginning of the UserControl. This will avoid having it enclosed in another web control that may have its Visible
property set to false.

<form id="form1" runat="server" >
 <des:DateTextBox id="DummyDTB" runat="server" />
 <asp:othercontrols here />

Make sure this control is always added to the page, even if you are not sure if same type of control will actually be
added during a callback. WARNING: It must be added to the Page’s Control tree before any of the same type
controls that you plan to show in the AJAX panel because its PreRender method must run first. Otherwise, you will
get JavaScript errors after the callback.

 Set up the popup elements on this control the way you want to see them when the control is shown in the browser.
These popups will be written out when the page is first generated.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar propertyname="value" propertyname2="value" />
 </PopupCalendar>
</des:DateTextBox>

 Call the new control’s PreLoadForAJAX() method in Page_Load().

DummyDTB.PreLoadForAJAX()

The call to PreLoadForAJAX()prevents this control from appearing on the page, but DES will use it to preload
the HTML and scripts of its popups.

See “Example 4 – Control with Popups first created during Callback”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 126 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 1 – Using the AllInAJAXUpdate property for “Quick Setup”

Suppose AJAX will update a DES TextBox, an associated RequiredTextValidator, and a DES Button. You determine that this
system uses the AJAXSystemType of RegisterScripts. It has a control that manages updates called UpdatePanel with
a property called InCallback which is true when it is in a callback. You choose the
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate property because these are the only DES controls on the page.

<ajax:UpdatePanel id="UpdatePanel1" runat="server">
 <des:TextBox id="TextBox1" runat="server" />
 <des:RequiredTextValidator id="RTV1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

 <des:Button id="Submit" runat="server" Text="Submit" />
</ajax:UpdatePanel >

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page,
PeterBlum.DES.AJAXManager.AJAXSystemType.RegisterScripts,
UpdatePanel1.InCallback);

PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = true;

[VB]

PeterBlum.DES.AJAXManager.UsingMagicAjax(AjaxPanel1)
PeterBlum.DES.AJAXManager.Current.AllInAJAXUpdate = True

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 127 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 2 – Identify individual DES Controls for Optimized Performance

Suppose AJAX will update a DES TextBox, an associated RequiredTextValidator, and a DES Button. You determine that this
system uses the AJAXSystemType of EmbedScripts. It has a control that manages updates called UpdatePanel with a
property called InCallback which is true when it is in a callback. You want to use the InAJAXUpdate property on each DES
control in the AjaxPanel because there are other DES controls on the page.

Note: To analyze how the InAJAXUpdate property on DES’s controls have been set up, see “Analyzing the
InAJAXUpdate Properties on DES Controls”.

<ajax:UpdatePanel id="UpdatePanel1" runat="server">
 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

 <des:Button id="Submit" runat="server" Text="Submit" InAJAXUpdate="true" />
</ajax:UpdatePanel>

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page,
PeterBlum.DES.AJAXManager.AJAXSystemType.EmbedScripts,

 UpdatePanel1.InCallback);

[VB]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page, _
PeterBlum.DES.AJAXManager.AJAXSystemType.EmbedScripts, _

 UpdatePanel1.InCallback);

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 128 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 3 – Controls added during Callback

Suppose AJAX will update a DES TextBox, an associated RequiredTextValidator, and a DES Button. The TextBox and
Validator controls are inside of a Panel which is Visible=false until the DES Button sets it to Visible=true during a
callback. You determine that this system uses the AJAXSystemType of GetScriptsAtEnd. It has a control that manages
updates called UpdatePanel with a property called InCallback which is true when it is in a callback.

<ajax:UpdatePanel id="UpdatePanel1" runat="server">
 <asp:Panel id="Panel1" runat="server" Visible="false">
 <des:TextBox id="TextBox1" runat="server" InAJAXUpdate="true" />
 <des:RequiredTextValidator id="RTV1" runat="server" InAJAXUpdate="true"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />

 </asp:Panel>
 <des:Button id="Show" runat="server" Text="Submit" InAJAXUpdate="true"
 Click="Show_ButtonClick" />
</ajax:UpdatePanel>

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page,
 PeterBlum.DES.AJAXManager.AJAXSystemType.GetScriptsAtEnd,
 UpdatePanel1.InCallback);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.Validators);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes);

[VB]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page, _
 PeterBlum.DES.AJAXManager.AJAXSystemType.GetScriptsAtEnd, _
 UpdatePanel1.InCallback)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.Validators)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_
 PeterBlum.DES.AJAXManager.FeatureList.TextBoxes)

This code goes in Show_ButtonClick():

[C#]

Panel1.Visible = true;

[VB]

Panel1.Visible = True

This code goes after PreRender runs, such as in the Page’s PreRenderCompleted event (only in ASP.NET 2.0). In this
example, assume that the UpdatePanel class has a property called Scripts where a string of JavaScript can be assigned.

[C#]

UpdatePanel1.Scripts = PeterBlum.DES.AJAXManager.GetCachedScripts();

[VB]

UpdatePanel1.Scripts = PeterBlum.DES.AJAXManager.GetCachedScripts()

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 129 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 4 – Control with Popups first created during Callback

Suppose AJAX will update a GridView that shows a DateTextBox in edit mode. Until the GridView is in edit mode, the
<EditItemTemplate> is not created, requiring a dummy DateTextBox to preload the popups. The dummy
DateTextBox’s popups must have the same properties as the actual DateTextBox. In this case, CssClass is set to a custom
style sheet class.

You determine that this system uses the AJAXSystemType of EmbedScripts. It has a control that manages updates
called UpdatePanel with a property called InCallback which is true when it is in a callback. You want to use the
InAJAXUpdate property on each DES control in the AjaxPanel because there are other DES controls on the page.

<des:DateTextBox id="DummyDTB" runat="server" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
</des:DateTextBox>
<ajax:UpdatePanel id="UpdatePanel1" runat="server">

 <asp:GridView id="GridView1" runat="server" OnRowCreated="GridView1_RowCreated" >
 <Columns>
 <des:CommandField ShowEditButton="True" />
 <asp:TemplateField>
 <ItemTemplate>…</ItemTemplate>
 <EditItemTemplate>

 <des:DateTextBox id="DateTextBox1" runat="server" InAJAXUpdate="true" >
 <PopupCalendar>
 <Calendar CssClass="MyCalendarClass" />
 </PopupCalendar>
 </des:DateTextBox>

 </EditItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

</ajax:UpdatePanel>

Using the PageManager:

<des:PageManager id="PageManager1" runat="server"
PreLoadForAJAX-DateTextBoxes="True" >

</des:PageManager>

This code goes in Page_Load():

[C#]

DummyDTB.PreLoadForAJAX();

[VB]

DummyDTB.PreLoadForAJAX()

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 130 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Programmatically:

This code goes in Page_Load():

[C#]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page,
 PeterBlum.DES.AJAXManager.AJAXSystemType.EmbedScripts,
 UpdatePanel1.InCallback);
PeterBlum.DES.AJAXManager.PreregisterForAJAX(

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes);
DummyDTB.PreLoadForAJAX();

[VB]

PeterBlum.DES.AJAXManager.UsingAJAXUpdates(Page, _
 PeterBlum.DES.AJAXManager.AJAXSystemType.EmbedScripts, _
 UpdatePanel1.InCallback)
PeterBlum.DES.AJAXManager.PreregisterForAJAX(_

PeterBlum.DES.AJAXManager.FeatureList.DateTextBoxes)
DummyDTB.PreLoadForAJAX()

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 131 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

AJAXManager Properties
The AJAXManager class has several properties that can assist you. Some are static (Shared in Visual Basic), referenced
through PeterBlum.DES.AJAXManager. Others are found on PeterBlum.DES.AJAXManager.Current.

Static (Shared) Properties
 Current (PeterBlum.DES.AJAXManager) – A reference to the active AJAXManager class that the page is using. It

contains properties you can set to customize the behavior on a page level.

Page-Level Properties
 AllInAJAXUpdate (Boolean) – Allow all controls on the page to generate their AJAX-specific scripts. When true, it

means all controls are in AJAX. When false, use the individual control's InAJAXUpdate.

It is not optimal to set this to true because it may cause more data to be transmitted. However, it’s a convenient way to
create a page. Later, the user can shut it off and set individual controls to optimize. Or they can use it permanently and
take any performance hit.

ALERT: When DES controls are in an AJAX update, you must set AllInAJAXUpdate to true or the individual
InAJAXUpdate properties to true on each DES control. Otherwise JavaScript errors will occur after a callback.

 PageUsesCallbacks (Boolean, Read Only) – Returns true when the page has been set up for callbacks through one of
the AJAXManager.UsingXYZ() methods.

 InCallback (Boolean, Read Only) – Returns true if the current page request is in a callback. It is only set after calling
one of the AJAXManager.UsingXYZ() methods.

 ReattachAllControls (Boolean) – Normally the controls inside the panel will have their change monitoring events,
onclick or onchange, hooked up so that changes will invoke DES actions. Controls outside the panel will not.

If the controls inside the panel are used by DES controls outside the panel, set this to true to force DES to set up the
change monitoring events. It defaults to false.

 RestoreValidatorState (Boolean) – Callbacks can replace the HTML of validators, eliminating their known state (valid
or invalid). Often a callback should have no visual impact on a validator's state. Use RestoreValidatorState to preserve
or forget the state after a callback. When true, it restores the validator state. When false, validators appear according
to their server side setup which is hidden unless you called PeterBlum.DES.Globals.Page.Validate()
explicitly. It defaults to true.

If your callback does server side processing that changes the fields, such as clearing them to start a new record, you
probably should set this to false.

When restoring validators, it only affects validators that were previously fired on the form. This prevents validator errors
from appearing where they were not present before.

 EmbedFinishTimeDelay (Integer) - When using EmbedScripts system type through
AJAXManager.UsingAJAXUpdates() or UsingRadCallback(), it must run the function
DES_FinishCallback() by using a timer. This is the time delay in milliseconds. It defaults to 500 (0.5 seconds). It
can be adjusted based on the time it takes the page to normally process the callback.

 DebugMode (Boolean) – When true, the page will generate several extra scripts useful in debugging: the actual script
files and style sheets. Another debugging technique is to set <% @Page Trace=True %>. The trace will identify which
controls will have their HTML and scripts updated by an AJAX update.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 132 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Other AJAXManager Methods
The PeterBlum.DES.AJAXManager class offers these static/shared methods to assist you.

PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate
Use the SetChildrenInAJAXUpdate() method to update a container control, like a panel, so that all of its child DES
controls have their InAJAXUpdate property set to true. If any DES control points to another control outside of the
container, its InAJAXUpdate property will also be set to true. However, if there is a DES control outside the container that
is not pointed to by a control inside the container, it will still need you to set InAJAXUpdate.

Call SetChildrenInAJAXUpdate() after all child controls are defined. If you define the controls in ASP.NET
declarative syntax, you can do this in Page_Load(). If controls are created by DataBinding or in a post back event handler,
be sure to call this after those processes create their controls.

Be aware that this method must search through the container control’s tree of child controls. This can take some time (in terms
of server CPU usage) and will happen on every page request. It is smart to limit the size of the tree it searches by choosing the
smallest container possible and using the maxDepth parameter to limit the depth of the tree searched.

You can further optimize by using these steps:

1. Set the Page’s Trace property to true. <%@ Page Trace="True" %>

2. Call SetChildrenInAJAXUpdate() where appropriate.

3. Open the page in the browser and look at the Trace. It will list each DES control that it had to modify.

4. Set the InAJAXUpdate property to true on each of those controls.

5. Remove the call to SetChildrenInAJAXUpdate() and Trace="True".

Here is the definition.

[C#]

void SetChildrenInAJAXUpdate(Control container, int maxDepth);

[VB]

Sub SetChildrenInAJAXUpdate(ByVal container As Control,_
 ByVal maxDepth As Integer)

Parameters

container

The container control. It’s often the AJAX framework’s “panel” although it can be any container control, such as
UserControl, DataGrid, Table, and Panel. (It does not support the radAJAXManager, because its list of controls is
not child controls.)

maxDepth

Limits the search down the control tree to optimize the search. Always pass 1 or higher. If you want to search the
entire tree, pass 100.

Example

Update controls in the Atlas UpdatePanel control named UpdatePanel1. Limit it to 3 levels of the child controls in the tree.

[C#]

PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate(UpdatePanel1, 3);

[VB]

PeterBlum.DES.AJAXManager.SetChildrenInAJAXUpdate(UpdatePanel1, 3)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 133 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Analyzing the InAJAXUpdate Properties on DES Controls
If you are trying to improve performance or are having controls fail when using the “Good Performance” setup for MS
AJAXUpdate, DES provides a tool to expose how every DES control’s InAJAXUpdate property is setup.

There are two ways to activate this feature: using a querystring parameter or adding a control to the page.

Querystring parameter
This technique only works when the page is requested the first time. It cannot evaluate any changes made to the page after a
callback.

To use it, add the desdebug= parameter to the querystring of your URL. You will get a menu. Select the AJAX option.

Note: the desdebug= parameter has security restrictions based on IP address. If you are not running from http://localhost,
you will either have to expand the IP addresses allowed, or define a password. See “Running a DES Debugging Report from
when the Server is not local”.

Add a control to the page
This technique takes a little more work but gives you the analysis on every page request, including after the callback.

 Add a Literal or Label control to the page. It should be part of your AJAX update, such as in Microsoft’s UpdatePanel or
the RadAJAXManager. Don’t worry, its temporary. It will be inserting an extensive element to your page so be prepared
for the page to look dramatically different.

 In Page_Load(), call this code passing the Literal or Label control:

[C#]

PeterBlum.DES.AJAXManager.Current.OutputDescription(control);

[VB]

PeterBlum.DES.AJAXManager.Current.OutputDescription(control)

 Use the page, including callbacks.

 When done, remove the control and line of code, or at least set the control to Visible=false.

Using the Analysis
So long as the AllInAJAXUpdate property is false, you will get a report like this:

UniqueID Type InAJAXUpdate Modified* Notes
 TextBox1 IntegerTextBox False
 Button1 Button False
 RequiredTextValidator1 RequiredTextValidator True In UpdatePanel
 Button2 Button True In UpdatePanel

The InAJAXUpdate column is key here. It should read True for any control that is involved in the AJAX callback or
connected to a control in the AJAX callback. When the Modified column has some text, the InAJAXUpdate property is
initially false but programmatically changed to True. If you are trying to get the best performance, change the
InAJAXUpdate property to true directly on that control.

http://localhost/�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 134 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

The String Lookup System
Most string properties throughout DES have an associated LookupID property. When the LookupID property is assigned, you
are directing DES to lookup the string within the String Lookup System.

The String Lookup System can be used in two ways:

 Localize strings based on the current culture defined in the PeterBlum.DES.Globals.Page.CultureInfo property. DES
does not handle translating text. It only provides a way to lookup strings from a data source. There are numerous
resources available to translate the text and put it into your data source. There are software products and companies that
specialize in this work. A Google search on “language translation software” provides numerous helpful entries.

ASP.NET 2 also provides a mechanism for string lookups using resources called “Declarative Localization Expressions”.
It is best suited for ASP.NET Declarative Syntax while the DES String Lookup System also works programmatically.

 Provide a library of standardized strings for validator error messages and anything else you want. The library keeps all
the strings in one place where programmers who add Validators to the page only need to identify which string to use.
This way, you can edit the strings on one place and change your application globally.

Click on any of these topics to jump to them:

 Datasources

 Elements Needed In Your DataSource

 Using the Resource Manager

 Mapping the String Group names to the associated resource files.

 Add .resx Files for each String Group to your Web Application

 Supporting Cultures

 Entering Strings and Compiling Them

 Using non-default Resource

 Using a Database

 Set up a Database With The Appropriate Tables

 Add the DESLookupString Stored Procedure

 Provide the ConnectionString to the Database

 Writing Your Own Lookup String Event Handler

 Create the Event Handler Method

 Using the OnLookupString property

 Calling The String Lookup System

http://quickstarts.asp.net/QuickStartv20/aspnet/doc/localization/localization.aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 135 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Datasources
You must supply a datasource for your strings. Microsoft created the Resource Manager with its .resx files as a convenient
way of defining strings. You can define tables in a database, use a third party localization system, or build something and call
it through an event handler.

 Resource Manager – Microsoft designed the Resource Manager to handle localization. You create a .resx file,
defining a unique ID in the Name attribute for each string and the default or localized text in the Value attribute. You
define separate .resx files for each culture, giving them names that differ by the culture name itself:
MyMessages.resx, MyMessages.en-US.resx, MyMessages.en-GB.resx, etc. See http://msdn2.microsoft.com/en-
us/library/aa309421(VS.71).aspx for details. DES provides a framework to quickly start using the Resource Manager
as your datasource.

See “Using the Resource Manager”.

 Database – You can use a database to store each string. You define the tables and write a stored proc that DES will
call to lookup a string.

See “Using a Database”.

 Third Party Localization Systems – There are several .Net software products that handle localization. Underlying
them is a datasource. You can use their tools to store the localized strings. You write an event handler to access their
datasource.

See “Writing Your Own Lookup String Event Handler”

 Other solutions – You can invent your own system. Perhaps you have an XML file format or COM object which
maintains the localized strings. You write an event handler to access their datasource.

See “Writing Your Own Lookup String Event Handler”

http://msdn2.microsoft.com/en-us/library/Aa309403(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/aa309421(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/aa309421(VS.71).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 136 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Elements Needed In Your DataSource
When DES needs to lookup a string, it supplies three data elements to a method that will find a match and return the string.
Your datasource should be able to handle these elements.

 LookupID – This is an identifier used to find a particular string. It is the same value you assign to any DES property that
ends in “LookupID”. When using the Resource Manager, this maps to the Name attribute. LookupID values should be
unique across a culture.

 Culture Name – This is a unique name defining the region and language as defined in the RFC 1766 standard and is found
in CultureInfo.Name. See http://msdn2.microsoft.com/en-us/library/87k6sx8t(vs.71).aspx for details on this naming
convention. You define translated strings for each desired culture, identified with the same LookupID. There are three
formats for a culture name:

o Language and region specific – These match the CultureInfo.Name property exactly. Use this for strings where
regions use the same overall language but have variations in some words. For example, “color” and “colour” are
the same word in English (“en”) but there regional differences where “color” is used in the United States (“en-
US”) and “colour” is used in Great Britain (“en-GB”).

The culture name has this format: <language>-<region>. Select as many of these as you want to support. See
http://msdn2.microsoft.com/en-us/library/87k6sx8t(vs.71).aspx for a list of culture names.

o Language only – These match the <language> part of the CultureInfo.Name property. This allows you to
translate for each language without taking into account the differences in regions. Use this for text that is
common amongst the regions or is a fallback for when the language and region specific resources do not supply
the localized string.

o Default – This is the fall back for all string lookups. It has no culture name. This is the only type used when you
are not localizing strings. When you are localizing strings, this is the fallback when there are no matches in the
previous two types.

 String Group – DES lets you separate your strings into groups so that you can keep lists of closely related data together.
When using resources, separate files are used for each group.

o ErrorMessages – Validator.ErrorMessage and Validator.SummaryErrorMessage properties. Also includes
PopupErrorFormatter.ErrorMessageHelpLookupID.

o Labels - LocalizableLabel.TextLookupID and the Validator.Label.TextLookupID properties.

o ValidationMisc – All properties on ValidationSummary, NoErrorFormatter, RequiredFieldMarker, and
RequiredFieldDescriptors. Properties on ErrorFormatters except for tooltips and hints.

o DateTime – All Date and Time module properties except HintLookupID, HintHelpLookupID and
TooltipLookupID on the TextBoxes, which are in the Hints Group.

o ConfirmMessages – For confirm message boxes.

o PopupViews – For elements in the PopupView system that are not the actual message. (Messages come from
ErrorMessages, Hints, and ToolTips)

o Hints – For HintLookupID, HintHelpLookupID, and ToolTipLookupID properties on various textboxes, buttons,
and the NativeControlExtender. It also handles hints added to ContextMenus.

o ContextMenus – ContextMenu properties, except the ConfirmMessageLookupID which is in the
ConfirmMessages Group.

o TextCounter – TextCounter control properties.

o Misc – For strings not handled by any DES controls. The user can call the String Lookup System to request
strings from this file and assign the results to other controls.

http://msdn2.microsoft.com/en-us/library/87k6sx8t(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/87k6sx8t(vs.71).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 137 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the Resource Manager
The .Net Resource Manager is designed to manage localized text. This section will explain how to use resource files with
DES.

Visual Studio makes using resources easy. It provides the editors to enter your strings and compiles them automatically. The
compiled resources are placed into the same assembly as the web application itself. All other development tools, including
Web Matrix, require much more work to set up and manage resources. This documentation provides separate instructions for
Visual Studio.Net and other development tools.

Here are the steps to using the Resource Manager:

1. Add .resx files for each String Group to your web application. DES provides you with initial files.

2. Determine the cultures that you will support. Create .resx files for each culture within that String Group.

3. Enter strings into the .resx files and compile them into an assembly.

4. Configure DES to use your resources.

Click on any of these topics to jump to them:

 Mapping the String Group names to the associated resource files

 Add .resx Files for each String Group to your Web Application

 Supporting Cultures

 Entering Strings and Compiling Them

 Using non-default Resource

http://msdn2.microsoft.com/en-us/library/Aa309403(VS.71).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 138 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Mapping the String Group names to the associated resource files
DES supplies resource files for its String Groups. You can use them or your own. The next section documents how to install
them. This section helps you map the String Group to the associated resource file name.

String Group Name File Name Usage

ErrorMessages DESErrorMessages.resx Validator.ErrorMessage and Validator.SummaryErrorMessage
properties. Also includes
PopupErrorFormatter.ErrorMessageHelpLookupID.

Labels DESLabels.resx LocalizableLabel.TextLookupID and the
Validator.Label.TextLookupID properties.

ValidationMisc DESValidationMisc.resx All properties on ValidationSummary, NoErrorFormatter,
RequiredFieldMarker, and RequiredFieldDescriptors. Properties
on ErrorFormatters except for tooltips and hints.

DateTime DESDateTime.resx All Date and Time module properties except HintLookupID,
HintHelpLookupID and TooltipLookupID on the TextBoxes,
which are in the Hints Group.

ConfirmMessages DESConfirmMessages.resx For confirm message boxes.

PopupViews DESPopupViews.resx For elements in the PopupView system that are not the actual
message. (Messages come from ErrorMessages, Hints, and
ToolTips)

Hints DESHints.resx For HintLookupID, HintHelpLookupID, and ToolTipLookupID
properties on various textboxes, buttons, and the
NativeControlExtender. It also handles hints added to
ContextMenus.

ContextMenus DESContextMenu.resx ContextMenu properties, except the ConfirmMessageLookupID
which is in the ConfirmMessages Group.

TextCounter DESTextCounter.resx TextCounter – TextCounter control properties

Misc DESMisc.resx For strings not handled by any DES controls. The user can call the
String Lookup System to request strings from this file and assign
the results to other controls

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 139 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Add .resx Files for each String Group to your Web Application
DES provides empty .resx files for you to add to your web application. They are in the [DES Product
folder]\StringLookup. There is one file for each String Group.

Adding These Files In Visual Studio 2005/2008

If you are using Visual Studio 2005 to develop your web application, here are the steps to add each of these files.

Note: If you are using the Web Application Projects feature of Visual Studio, see the next section.

1. Open Solution Explorer.

2. Determine if you already have a folder called App_GlobalResources. If not, right click on the web application project
name and select Add Folder; App_GlobalResources.

3. Right click on the App_GlobalResources folder and select Add; Add Existing Item.

4. Add all files of the pattern DES*.resx from the [DES Product folder]\StringLookup folder. To learn about these
files, see “Mapping the String Group names to the associated resource files”.

5. If you want to support cultures, duplicate these files and rename the according to the naming convention for culture
oriented resources. See “Supporting Cultures”.

Adding These Files In Visual Studio 2002-2003 and Web Application Projects in VS2005/8

If you are using Visual Studio.Net 2002 or 2003 to develop your web application, here are the steps to add each of these files.

Note: Each of these files will be added to the root folder of your web application.

1. Open Solution Explorer.

2. Right click on the web application project name and select Add; Add Existing Item.

3. Add all files of the pattern DES*.resx from the [DES Product folder]\StringLookup folder. To learn about these
files, see “Mapping the String Group names to the associated resource files”.

4. In the Solution Explorer, confirm that each file has the property Build Action set to Embedded Resource.

5. Point DES to your resources.

6. Open the Global Settings Editor. It is available in the Start menu or in the [DES Product folder].

7. Select the custom.DES.config file in [2webapplicationroot]\DES using the button.

8. Select the String Lookup System item from the list. It is at the bottom.

9. Change the ResAssemblyName property to have the same name as your web application’s assembly, omitting the “.dll”.

10. Save and close the Global Settings Editor. You may need to restart Visual Studio and/or your web application to see
changes made in the custom.des.config file.

Non-Visual Studio.Net Users

See these topics of the .net documentation:

Creating Resource Files

Creating and Editing Resource Files with ResEditor

http://msdn2.microsoft.com/en-us/library/xbx3z216(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/Aa984334(VS.71).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 140 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Supporting Cultures
If you are supporting cultures and localization, start by determining the cultures that you want to support. See
http://msdn2.microsoft.com/en-us/library/87k6sx8t(vs.71).aspx for a list of culture names.

The Resource Manager provides a fallback process where it looks for an exact match to the culture name, then to the
language, then to the default.

Your strategy is to create several .resx files. Each will have a common “base name”. All except the default type will have the
language or language-region in the name in this style:

<basename>.<language>.resx (“DESGroupName.en.resx”)

<basename>.<language>-<region>.resx (“DESGroupName.en-US.resx”)

Example

Supposed your Default culture file contains English for the United States. You want to support English in Great Britain,
French for Canada and French for France. Here is how you might define the files:

Default culture (en-US)

DESGroupName.resx

Great Britain (en-GB)

DESGroupName.en-GB.resx

French (fr)

DESGroupName.fr.resx

Canada French (fr-CA)

DESGroupName.fr-CA.resx

France (fr-FR)

DESGroupName.fr-FR.resx

http://msdn2.microsoft.com/en-us/library/87k6sx8t(vs.71).aspx�
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconpackagingdeployingresources.asp?FRAME=true#cpconpackagingdeployingresourcesanchor1�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 141 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Entering Strings and Compiling Them

Visual Studio Users

To edit, open the .resx file from the Solution Explorer. Visual Studio provides a row-column interface where each row
represents one record.

Start in a blank row. Enter the LookupID into the Name column and the localized text into the Value column. Create one row
for each LookupID. The LookupID is the value entered into a control’s property that ends with “LookupID”.

When done save the file.

To compile, build your web application project. Visual Studio automatically compiles all .resx files for you.

Non-Visual Studio.Net Users

1. Edit the .resx file. The .resx file is an XML file that you can edit in Notepad or your favorite editor. See these topics in
the .net documentation.

Resources in .Resx File Format

Creating and Editing Resource Files with ResEditor

2. Compile the .resx file into a .resources file. Be sure to include the name of the assembly in the file name like this:

[assemblyname].[resxfilename].resources

For example, if your assembly is called “MyResources” and you are compiling the DESErrorMessages.resx file, it should
be named “MyResources.DESErrorMessages.resources”.

Note: If you want to use another naming convention, you must load the resource files yourself in the Application_Start()
method. DES’s loader uses the above format. See “Properties of the PeterBlum.DES.StringLookup Class”.

See this topic in the .net documentation:

Resource File Generator (ResGen.exe)

Examples of using RegGen.exe:

resgen.exe DESErrorMessages.resx MyResources.DESErrorMessages.resources
resgen.exe DESLabels.resx MyResources.DESLabels.resources
resgen.exe DESValidationMisc.resx MyResources.DESValidationMisc.resources

3. Use the AL.exe application to place the .resources file into an assembly. DES can only read its resources from within
assemblies. See this topic in the .net documentation:

Creating Satellite Assemblies

Examples of using AL.exe to create “MyResources.dll”:

al /t:lib
/embed:MyResources.DESErrorMessages.resources
/embed:MyResources.DESLabels.resources
/embed:MyResources.DESValidationMisc.resources
/out:MyResources.dll

4. If necessary, copy the assembly into your web application’s \bin folder.

http://msdn2.microsoft.com/en-us/library/ekyft91f(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/Aa984334(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/ccec7sz1(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/f45fce5x(vs.71).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 142 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using non-default Resource files and Assemblies
Note: If you followed the steps in “Adding These Files In Visual Studio 2005/2008” or “Adding These Files In Visual Studio
2002-2003 and Web Application Projects in VS2005/8”, you may have already done this. Let this section serve as a reference.

DES provides default resource file names. To learn about these files, see “Mapping the String Group names to the associated
resource files”. If you want to use alternative names, such as other resource files that you already have, use this section.

DES needs to know the following in order to use your resources:

 The name of the assembly containing the resources or an Assembly object referencing the assembly.

 The base names of the resource files for each group (messages, labels, confirm, etc.) or ResourceManager objects for
each group.

DES maintains these settings in the class PeterBlum.DES.StringLookup. You can set them up in two places:

 custom.des.config –Run the Global Settings Editor and edit the section String Lookup System.

 Global.asax – The Application_Start() method can set up any of the properties on
PeterBlum.DES.StringLookup. It is generally used to create an Assembly object and ResourceManager
objects when the Assembly is not in the \bin folder.

Properties of the PeterBlum.DES.StringLookup Class

The properties of PeterBlum.DES.StringLookup are static/shared. You can set them in the
Application_Start() method or with the Global Settings Editor.

 ResAssemblyName (string) – The name of the assembly containing all of the resources. This name should not
include the .dll extension or the file path. The file must be in the \bin folder of the web application.

If you are using Visual Studio 2005 or 2008 (except when using Web Application Projects), leave it unassigned.

If you are using Visual Studio 2002 or 2003 or Web Application Projects in VS2005+, use the name of your web
application assembly.

If you are not using Visual Studio, you may have several assemblies ending in “.resource.dll”. There should also be
one without “.resource”. That one should be used.

Alternatively, you can set the ResourceAssembly property in the Application_Start() method.

 ResourceAssembly (System.Reflection.Assembly) – The Assembly object that references the assembly containing
the resources. This is set automatically when you use ResAssemblyName. You should set it when
ResAssemblyName is not enough to locate the assembly file. For example, it is not located in the \bin folder. You
set this programmatically in the Application_Start() method.

 ErrorMessagesResourceManager (System.Resources.ResourceManager) – The ResourceManager object that
refers to the resources for the ErrorMessage String Group.

Example

Assign programmatically in Application_Start() like this:

PeterBlum.DES.StringLookup.ErrorMessagesResourceManager =
 new ResourceManager("DESErrorMessages",
 System.Reflection.Assembly.GetExecutingAssembly())

Using Global Settings Editor

In the String Lookup System section, set the ErrorMessagesResXFile property to the base filename without any file
extension. (“DESErrorMessages”, not “DESErrorMessages.en-GB.resx”)

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemreflectionassemblyclasstopic.asp�
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemResourcesResourceManagerClassTopic.asp�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 143 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 LabelsResourceManager (System.Resources.ResourceManager) – The ResourceManager object that refers to the
resources for the Labels String Group.

Example

Assign programmatically in Application_Start() like this:

PeterBlum.DES.StringLookup.LabelsResourceManager =
 new ResourceManager("DESLabels",
 System.Reflection.Assembly.GetExecutingAssembly())

Using Global Settings Editor

In the String Lookup System section, set the LabelResXFile property to the base filename without any file
extension. (“DESLabels”, not “DESLabels.en-GB.resx”)

 ValidationMiscResourceManager (System.Resources.ResourceManager) – The ResourceManager object that
refers to the resources for the ValidationMisc String Group.

Example

Assign programmatically in Application_Start() like this:

PeterBlum.DES.StringLookup.ValidationMiscResourceManager =
 new ResourceManager("DESValidationMisc",
 System.Reflection.Assembly.GetExecutingAssembly())

Using Global Settings Editor

In the String Lookup System section, set the ValMiscResXFile property to the base filename without any file
extension. (“DESValidationMisc”, not “DESValidationMisc.en-GB.resx”)

 DateTimeResourceManager (System.Resources.ResourceManager) – The ResourceManager object that refers to
the resources for the DateTime String Group.

Example

Assign programmatically in Application_Start() like this:

PeterBlum.DES.StringLookup.DateTimeResourceManager =
 new ResourceManager("DESDateTime",
 System.Reflection.Assembly.GetExecutingAssembly())

Using Global Settings Editor

In the String Lookup System section, set the DateTimeResXFile property to the base filename without any file
extension. (“DESDateTime”, not “DESDateTime.en-GB.resx”)

 HintResourceManager (System.Resources.ResourceManager) – The ResourceManager object that refers to the
resources for the Hint String Group.

Example

Assign programmatically in Application_Start() like this:

PeterBlum.DES.StringLookup.HintResourceManager =
 new ResourceManager("DESHints",
 System.Reflection.Assembly.GetExecutingAssembly())

Using Global Settings Editor

In the String Lookup System section, set the HintResXFile property to the base filename without any file extension.
(“DESHints”, not “DESHints.en-GB.resx”)

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemResourcesResourceManagerClassTopic.asp�
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemResourcesResourceManagerClassTopic.asp�
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemResourcesResourceManagerClassTopic.asp�
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemResourcesResourceManagerClassTopic.asp�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 144 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 ConfirmResourceManager (System.Resources.ResourceManager) – The ResourceManager object that refers to the
resources for the Confirm String Group.

Example

Assign programmatically in Application_Start() like this:

PeterBlum.DES.StringLookup.ConfirmResourceManager =
 new ResourceManager("DESConfirmMessages",
 System.Reflection.Assembly.GetExecutingAssembly())

Using Global Settings Editor

In the String Lookup System section, set the ConfirmResXFile property to the base filename without any file
extension. (“DESConfirmMessages”, not “DESConfirmMessages.en-GB.resx”)

 PopupViewResourceManager (System.Resources.ResourceManager) – The ResourceManager object that refers to
the resources for the PopupView String Group.

Example

Assign programmatically in Application_Start() like this:

PeterBlum.DES.StringLookup.PopupViewResourceManager =
 new ResourceManager("DESPopupViews",
 System.Reflection.Assembly.GetExecutingAssembly())

Using Global Settings Editor

In the String Lookup System section, set the PopupViewResXFile property to the base filename without any file
extension. (“DESPopupViews”, not “DESPopupViews.en-GB.resx”)

 ContextMenuResourceManager (System.Resources.ResourceManager) – The ResourceManager object that refers
to the resources for the ContextMenu String Group.

Example

Assign programmatically in Application_Start() like this:

PeterBlum.DES.StringLookup.ContextMenuResourceManager =
 new ResourceManager("DESContextMenu",
 System.Reflection.Assembly.GetExecutingAssembly())

Using Global Settings Editor

In the String Lookup System section, set the ContextMenuResXFile property to the base filename without any file
extension. (“DESContextMenu”, not “DESContextMenu.en-GB.resx”)

 TextCounterResourceManager (System.Resources.ResourceManager) – The ResourceManager object that refers
to the resources for the TextCounter String Group.

Example

Assign programmatically in Application_Start() like this:

PeterBlum.DES.StringLookup.TextCounterResourceManager =
 new ResourceManager("DESTextCounter",
 System.Reflection.Assembly.GetExecutingAssembly())

Using Global Settings Editor

In the String Lookup System section, set the TextCounterResXFile property to the base filename without any file
extension. (“DESTextCounter”, not “DESTextCounter.en-GB.resx”)

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemResourcesResourceManagerClassTopic.asp�
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemResourcesResourceManagerClassTopic.asp�
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemResourcesResourceManagerClassTopic.asp�
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemResourcesResourceManagerClassTopic.asp�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 145 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 MiscResourceManager (System.Resources.ResourceManager) – The ResourceManager object that refers to the
resources for the Misc String Group.

Example

Assign programmatically in Application_Start() like this:

PeterBlum.DES.StringLookup.MiscResourceManager =
 new ResourceManager("DESMisc",
 System.Reflection.Assembly.GetExecutingAssembly())

Using Global Settings Editor

In the String Lookup System section, set the MiscResXFile property to the base filename without any file extension.
(“DESMisc”, not “DESMisc.en-GB.resx”)

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemResourcesResourceManagerClassTopic.asp�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 146 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using a Database
DES lets you use a database as a datasource. You can define the structure of your tables in any way you choose. Perhaps you
have a third party localization program that uses your database. To access the database, DES requires that you add a stored
procedure called “DESLookupString” to your database. In addition, DES has several global properties in its
PeterBlum.DES.StringLookup class that determine the database connection string.

There are three steps to using a database for localization:

1. Set up a database with the appropriate tables.

2. Add the DESLookupString stored procedure.

3. Configure DES with a database connection string.

Click on any of these topics to jump to them:

 Mapping String Group Names to their Associated Values in the Table

 Set up a Database With The Appropriate Tables

 Add the DESLookupString Stored Procedure

 Provide the ConnectionString to the Database

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 147 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Mapping String Group Names to their Associated Values in the Table
This section helps you associate the String Group with the associated name used in the StringGroup column in your table of
strings.

String Group Name Column Value Usage

ErrorMessages “ERRORMSG” Validator.ErrorMessage and Validator.SummaryErrorMessage
properties. Also includes
PopupErrorFormatter.ErrorMessageHelpLookupID.

Labels “LABEL” LocalizableLabel.TextLookupID and the
Validator.Label.TextLookupID properties.

ValidationMisc “VALMISC” All properties on ValidationSummary, NoErrorFormatter,
RequiredFieldMarker, and RequiredFieldDescriptors. Properties
on ErrorFormatters except for tooltips and hints.

DateTime “DATETIME” All Date and Time module properties except HintLookupID,
HintHelpLookupID and TooltipLookupID on the TextBoxes,
which are in the Hints Group.

ConfirmMessages “CONFIRM” For confirm message boxes.

PopupViews “POPUPVIEW” For elements in the PopupView system that are not the actual
message. (Messages come from ErrorMessages, Hints, and
ToolTips)

Hints “HINT” For HintLookupID, HintHelpLookupID, and ToolTipLookupID
properties on various textboxes, buttons, and the
NativeControlExtender. It also handles hints added to
ContextMenus.

ContextMenus “MENU” ContextMenu properties, except the ConfirmMessageLookupID
which is in the ConfirmMessages Group.

TextCounter “COUNTER” TextCounter – TextCounter control properties

Misc “MISC” For strings not handled by any DES controls. The user can call the
String Lookup System to request strings from this file and assign
the results to other controls

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 148 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Set up a Database With The Appropriate Tables
You can construct tables for string lookup any way you want. DES will supply you with an RFC 1766 standard for the culture
name and a string group. You can have columns for these or map them to separate tables. See “Elements Needed In Your
DataSource” for details. Your DESLookupString stored procedure will resolve the parameters supplied by DES.

If you do not have any tables set up yet, DES includes a SQL script that installs a table and compatible DESLookupString
stored procedure. Look in [DES Installation Folder]\StringLookup\DatabaseStringLookup.sql. Review this file to
see if this will work for you.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 149 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Add the DESLookupString Stored Procedure
You must add a stored procedure named “DESLookupString” to your database. The function is available in this sql file: [DES
Product Folder]\StringLookup\DatabaseStringLookup.sql

Here are the parameters:

 CultureName varchar (5) – The culture name. It is always the RFC 1766 standard, with 5 characters. Your code should
attempt to match to this name exactly. If it fails, it should match to the language part. If that fails, it should look in the
default culture.

 StringGroup varchar (10) – A string representation of the String Group. Here are the values it will get: “ERRORMSG”,
“LABEL”, “VALMISC”, “MENU”, “DATETIME”, “HINT”, “CONFIRM”, “POPUPVIEW”, “COUNTER”, “MISC”.

For details, see “Mapping String Group Names to their Associated Values in the Table”.

 LookupID varchar (50) – The value from the LookupID property.

 LocalizedText varchar (4000) – OUTPUT PARAMETER. This is the localized string found. If there was no match, set it
to null.

DESLookupString() must return 1 for found and 0 for not found.

Here is a framework for DESLookupString():

CREATE PROCEDURE DESLookupString
@CultureName varchar(5),
@StrGroup varchar(10),
@LookupID nvarchar (50),
@LocalizedText nvarchar (4000) OUTPUT
AS

SET @LocalizedText = NULL
SET @StrGroup = RTRIM(@StrGroup)
DECLARE @LangName varchar(2) -- language part of @CultureName
SET @LangName = LEFT(@CultureName, 2)

-- Find @LocalizedText by matching to @CultureName.
-- If not found, match to @LangName
-- If not found, use the Default culture ("")

-- Return 1 for found; 0 for not found
IF (@LocalizedText IS NULL)
BEGIN
 RETURN 0
END
ELSE
BEGIN
 RETURN 1
END

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 150 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Provide the ConnectionString to the Database
DES needs a ConnectionString to your database. It is established either in the Global Settings Editor within the String
Lookup Section or programmatically in Application_Start() by editing the properties shown below. When using
Application_Start(), these properties are static/shared on the PeterBlum.DES.StringLookup class.

Note: Design mode will lookup text from your database once this is set up. If your development computer does not have
access to the database through the connection string, errors will show in Design Mode. Run the Global Settings Editor and
change the DesignModeOn property to false.

 ConnectionStringName (string) – Users of ASP.NET 2.0 can establish their connection string within the
<connectionstrings /> section of the web.config file. For example:

<connectionstrings>
 <add name="NorthWind"
 connectionString="server=.;database=NorthWind;Integrated Security=SSPI"
 providerName="System.Data.SqlClient" />
</connectionstrings>

Set the ConnectionStringName property using the name attribute from the web.config file. For example,
“NorthWind”.

 SqlConnectionString (string) – If you are using the Microsoft SQL Server 7 or higher database, assign a connection
string here.

 OleDbConnectionString (string) – If you are using a database that supports an OleDb connection string, assign an
OleDb compatible connection string here.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 151 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Writing Your Own Lookup String Event Handler
If you cannot use the Resource Manager or Database models described above, you can set up the OnLookupString property
to your own event handler method.

There are two steps to using your own event handler:

1. Create the event handler method. Suggested location: the Global.asax file.

2. Assign it to the OnLookupString property in the Application_Start() method of Global.asax.

Create the Event Handler Method
The OnLookupString property uses this definition for methods:

[C#]

public delegate void LookupStringHandler(LookupStringHandlerArgs args);

[VB]

Public Delegate Sub LookupStringHandler(_
 ByVal args As LookupStringHandlerArgs)

The PeterBlum.DES.LookupStringHandlerArgs class provides two-way communicate with your method. Some
properties are inputs. Others are outputs. Generally, you will use the CultureName, StringGroup, and LookupID properties
to find the text in your own datasource. If text is found, set Found to true and Result to the text that was found.

Here are the properties of PeterBlum.DES.LookupStringHandlerArgs:

 LookupID (string) – The value from the LookupID property.

 CultureName (string) – The culture name from PeterBlum.DES.Globals.Page.CultureInfo.Name. It follows the RFC
1766 standard. Your code should attempt to match to this name exactly. If it fails, it should match to the language part. If
that fails, it should look in the default culture.

 Group (PeterBlum.DES.StringLookup.StringLookupGroup) – Identifies the String Group through an enumerated type.
The next property, StringGroup, provides a similar service, with a string for the group name. The enumerated type
PeterBlum.DES.StringLookup.StringLookupGroup has these values:

o ErrorMessages
o Labels
o ValidationMisc
o DateTime
o ConfirmMessages
o PopupViews
o Hints
o ContextMenus
o TextCounter
o Misc

 StringGroup (string) – Identifies the String Group through a string. It will be passed one of these values, which
correspond to the above Group property: “ERRORMSG”, “LABEL”, “VALMISC”, “MENU”, “DATETIME”, “HINT”,
“CONFIRM”, “POPUPVIEW”, “COUNTER”, “MISC”.

 Default (string) – The default string associated with the LookupID. For example, if the LookupID was
Validator.ErrorMessageLookupID, this is Validator.ErrorMessage. In some localization systems, they will ignore the
LookupID and translate using this value.

 Found (Boolean) – Set this to true when your event finds a match and returns it. It defaults to false.

 Result (string) – Set this to the text found. If nothing was found, do nothing with this value.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 152 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example

DES sets the OnLookupString property to the ResourceManagerLookupHandler method when you use the Resource
Manager. Here is a slightly edited version of that method.

[C#]

uses PeterBlum.DES;
…
public void ResourceManagerLookupHandler(
 LookupStringHandlerArgs args)
{
 ResourceManager vRM = null;
 switch (args.Group)
 {
 case StringLookup.StringLookupGroup.ErrorMessages:
 vRM = StringLookup.ErrorMessagesResourceManager;
 break;
 case StringLookup.StringLookupGroup.Labels:
 vRM = StringLookup.LabelsResourceManager;
 break;
 case StringLookup.StringLookupGroup.ValidationMisc:
 vRM = StringLookup.ValidationMiscResourceManager;
 break;
/* There are more groups than shown here */
 } // switch

 if (vRM != null)
 try
 {
 args.Result = vRM.GetString(args.LookupID,
 PeterBlum.DES.Globals.Page.CultureInfo);
 args.Found = true;
 }
 catch (Exception)
 {
 // not found. Do nothing.
 }

} // ResourceManagerLookupHandler

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 153 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

Imports PeterBlum.DES
…
Public Sub ResourceManagerLookupHandler(_
 ByVal args As LookupStringHandlerArgs)

 Dim vRM As ResourceManager = nothing
 Select args.Group
 Case StringLookup.StringLookupGroup.ErrorMessages
 vRM = StringLookup.ErrorMessagesResourceManager
 Case StringLookup.StringLookupGroup.Labels
 vRM = StringLookup.LabelsResourceManager
 Case StringLookup.StringLookupGroup.ValidationMisc
 vRM = StringLookup.ValidationMiscResourceManager
' There are more groups than shown here
 End Select

 If vRM <> Nothing Then
 Try
 args.Result = vRM.GetString(args.LookupID,
 PeterBlum.DES.Globals.Page.CultureInfo)
 args.Found = true
 Catch e As Exception
 ' not found. Do nothing.
 End Try

End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 154 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the OnLookupString property
The OnLookupString property is on the PeterBlum.DES.StringLookup class as a static/shared property. Set it in the
Global.asax file in the Application_Start() method.

[C#]

protected void Application_Start(Object sender, EventArgs e)
{
 PeterBlum.DES.StringLookup.OnLookupString =
 new PeterBlum.DES.LookupStringHandler(YourEventHandler);
}

[VB]

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 PeterBlum.DES.StringLookup.OnLookupString = _
 New PeterBlum.DES.LookupStringHandler(AddressOf YourEventHandler)
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 155 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Calling The String Lookup System
DES’s controls automatically use the String Lookup System when they have their LookupID property set up. You can use the
String Lookup System with other controls and elements on your page. Simply call the
PeterBlum.DES.StringLookup.StringIDLookup() method to convert your own LookupID into its looked-up
value. StringIDLookup() respects the current culture assigned to PeterBlum.DES.Globals.Page.CultureInfo.

PeterBlum.DES.StringLookup.StringIDLookup Method

[C#]

public static string StringIDLookup(string pLookupID, string pDefault,
 PeterBlum.DES.StringLookup.StringLookupGroup pGroup)

[VB]

Public Shared Sub StringIDLookup (ByVal pLookupID As String, _
 ByVal pDefault As String,

 ByVal pGroup As PeterBlum.DES.StringLookup.StringLookupGroup)

Parameters

pLookupID

This is an identifier used to find a particular string. When using the Resource Manager, this maps to the Name
attribute.

pDefault

A string to use when no match was found to pLookupID. It can be an empty string.

pGroup

Identifies the String Group through an enumerated type. The enumerated type
PeterBlum.DES.StringLookup.StringLookupGroup has these values:

o ErrorMessages
o Labels
o ValidationMisc
o DateTime
o ConfirmMessages
o PopupViews
o Hints
o ContextMenus
o TextCounter
o Misc

Return value

The string requested. It will follow the culture setting in PeterBlum.DES.Globals.Page.CultureInfo. If no match was found,
the value of the pDefault parameter is returned.

This is a static/shared method. You do not create an object before using it. Simply specify the StringLookup class like this:

result = PeterBlum.DES.StringLookup.StringIDLookup(
 "lookupID", "default", PeterBlum.DES.StringLookup.StringLookupGroup.GroupValue)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 156 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example

Add three strings to a DropDownList control. The user has defined these strings in the MISC String Group.

[C#]

PeterBlum.DES.StringLookup.StringLookupGroup vGroup =
 PeterBlum.DES.StringLookup.StringLookupGroup.Misc;
DropDownList1.Items.Add(
 PeterBlum.DES.StringLookup.StringLookupID(
 "USA", "United States", vGroup));
DropDownList1.Items.Add(
 PeterBlum.DES.StringLookup.StringLookupID(
 "Canada", "Canada", vGroup));
DropDownList1.Items.Add(
 PeterBlum.DES.StringLookup.StringLookupID(
 "Other", "Other", vGroup));

 [VB]

Dim vGroup As PeterBlum.DES.StringLookup.StringLookupGroup = _
 PeterBlum.DES.StringLookup.StringLookupGroup.Misc
DropDownList1.Items.Add(_
 PeterBlum.DES.StringLookup.StringLookupID(_
 "USA", "United States", vGroup))
DropDownList1.Items.Add(_
 PeterBlum.DES.StringLookup.StringLookupID(_
 "Canada", "Canada", vGroup))
DropDownList1.Items.Add(_
 PeterBlum.DES.StringLookup.StringLookupID(_
 "Other", "Other", vGroup))

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 157 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

The ViewState and Preserving Properties for PostBack
The ViewState is a property on each control and the Page that can preserve the last setting of various properties as the page is
recreated on PostBack. The idea is very simple and effective. Its design requires that each preserved property gets converted
into a string and written into the page (in the _ViewState hidden field). This string can greatly increase the size of the page. If
you don’t use the ViewState on a control, Microsoft provides the EnableViewState property to turn it off. By default, the
ViewState is on and it preserves most of the properties that are not at their default state into the page.

Each time the ViewState is assigned after the control is initialized, any data added to the ViewState is preserved. There is no
need to preserve most properties because you manage its setting on post back. But the ViewState still does, increasing the size
of the page meaninglessly. Microsoft designed it this way because it’s easy to use. The real-world usage of ViewState has
proven that page size needs to be considered.

DES’s controls rarely benefit from the ViewState. So instead of increasing the size of the page, they use a minimal ViewState.
For most controls, this comprises of the Enabled and Visible. See “Properties Automatically Saved in the ViewState”.
(Controls do store their own private data in the ViewState as needed. You shouldn’t try to disable that.)

Use the ViewStateMgr property on each DES control to save other properties into the ViewState. ViewStateMgr (type
PeterBlum.DES.ViewStateMgr) supplies properties and methods to manage the ViewState on the control.

TrackProperty Method

Use the TrackProperty() method on the ViewStateMgr property to remember a property. Generally this is done when
you programmatically change the property and expect the same result after a postback or AJAX callback.

Suppose that you want to preserve the AutoPostBack property. Call the TrackProperty() method passing
“AutoPostBack” like this:

TextBox1.ViewStateMgr.TrackProperty("AutoPostBack")

You can assign most properties by specifying their name. (The name must be a case sensitive match to the property name.) If
you want to assign a property that is a child to another property, use this format for the name:
"ParentPropertyName.ChildPropertyName". For example:

Validator1.ViewStateMgr.TrackProperty("ErrorFormatter.ForeColor")

Validator1.ViewStateMgr.TrackProperty("Enabler.ControlIDToEvaluate")

This feature has its limitations to the properties it can store. It will throw exceptions at runtime when you give it something
that it cannot handle. So test your settings.

After post back, DES automatically continues to preserve any property identified in TrackProperty(). If you want to
remove a property, call the RemoveProperty() method, passing the name of the property. For example:

TextBox1.ViewStateMgr.RemoveProperty("AutoPostBack")

ViewState Property – Promoting the ViewState to Public

Each control has its own ViewState property. It would be a great place for you to store something associated with the control
for use on post back. For example, if you want to recreate a list of conditions in CountTrueConditionsValidator, you might
want to store the number of conditions.

Unfortunately, the ViewState property is not public. So you cannot access it. The ViewStateMgr property provides you with
another ViewState property. You can store your settings into this one. Otherwise, it works the same as the one on the control
itself.

Setting the ViewState:

Validator1.ViewStateMgr.ViewState.Add("UniqueName", value)

UniqueName is a string that uniquely represents your data within this ViewState collection. Value is any serializable data or
object.

Getting the ViewState:

obj = Validator1.ViewStateMgr.ViewState["UniqueName"]

(In VB.Net, replace brackets with parenthesis.)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 158 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

This will return the value. Be sure to typecast to your value type. If the UniqueName is not found, it will return
null/nothing.

Properties Automatically Saved in the ViewState

Here are the properties that are automatically preserved in the ViewState.

Controls Properties

All TextBoxes Visible, Enabled, ReadOnly, Text.

Calendar,
MultiSelectionCalendar

Visible, Enabled, and any other property inherited from the System.Web.UI.WebControls.Panel
control. SelectedDate, SelectedDates, TodaysDate, MinDate, MaxDate, and SpecialDate

MonthYearPicker Visible, Enabled, and any other property inherited from the System.Web.UI.WebControls.Panel
control. Month, Year, MinDate, and MaxDate

TimePicker Visible, Enabled, and any other property inherited from the System.Web.UI.WebControls.Panel
control. SelectedTime

PopupMonthYearPicker,
PopupCalendar,
PopupTimePicker

Visible, Enabled, and any other property inherited from the
System.Web.UI.WebControls.WebControl base class.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 159 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Page Level Properties and Methods Used by Most Controls
Most of the behavior and formatting of the controls are found in their own properties. DES also provides properties that are
not found on any control. They are on the PeterBlum.DES.Globals.Page object. PeterBlum.DES.Globals.Page offers
“page-level” settings, values shared between all controls on a page.

This section covers properties and methods on PeterBlum.DES.Globals.Page used throughout the DES controls.

Click on any of these topics to jump to them:

 What is the PeterBlum.DES.Globals.Page property?

 Properties on PeterBlum.DES.Globals.Page

 Debugging PeterBlum.DES.Globals.Page Properties

 Methods on PeterBlum.DES.Globals.Page

 AttachCodeToEvent Method

What is the PeterBlum.DES.Globals.Page property?
The Page property on PeterBlum.DES.Globals uses the class PeterBlum.DES.DESPage. When accessed through
PeterBlum.DES.Globals.Page, you will have an object that is unique to the current thread. It is really a companion to the
Page object of a web form, hosting details related to DES. Properties set on it will not affect any other request for a page.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 160 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties on PeterBlum.DES.Globals.Page
You generally assign properties to PeterBlum.DES.Globals.Page in your Page_Load() method. Your post back event
handler methods can also assign properties.

 CultureInfo (System.Globalization.CultureInfo) – Cultures define date, time, number and text formatting for a program
to follow. DES uses this value within its data types (PeterBlum.DES.DESTypeConverter classes) as it translates between
strings and values. For example, the Date data type uses this to get the DateTimeFormatInfo class, which defines the short
date pattern (ex: MM/dd/yyyy) and date separator. The Currency data types use the NumberFormatInfo class to get the
currency symbol, decimal symbol, and number of decimal places.

The CultureInfo property uses CultureInfo.CurrentCulture by default. This value is determined by the web server’s .Net
settings or the <% @PAGE %> tag with the Culture property.

<%@Page Culture="en-US" [other page properties] %>

You can set it programmatically in your Page_Load() method. Use the .Net Framework method
CultureInfo.CreateSpecificCulture().For example, assigning the US culture looks like this:

PeterBlum.DES.Globals.Page.CultureInfo =
 CultureInfo.CreateSpecificCulture("en-US")

The default CultureInfo object is read-only. (It is a direct reference to the same object on CultureInfo.CurrentCulture
which Microsoft makes read-only.) If you want to modify the properties of this object, you must create a new one. Either
use the CreateSpecificCulture() method or Clone() the current one like this:

[C#]

PeterBlum.DES.Globals.Page.CultureInfo =
 (CultureInfo) PeterBlum.DES.Globals.Page.CultureInfo.Clone();
PeterBlum.DES.Globals.Page.CultureInfo.property = value;

[VB]

PeterBlum.DES.Globals.Page.CultureInfo = _
 CType(PeterBlum.DES.Globals.Page.CultureInfo.Clone(), CultureInfo)
PeterBlum.DES.Globals.Page.CultureInfo.property = value

 Browser (PeterBlum.DES.TrueBrowser) – Detects the actual browser that is requesting the page and configures the
HTML and JavaScript code returned to work with that browser. See “The TrueBrowser Class”.

 InitialFocusControl (System.Web.UI.Control) – Sets the focus on the page to this control when the page is first loaded.
Assign this property to a reference to the control that should get the initial focus. If the control is hidden or disabled,
focus will not be set because browsers do not permit it.

Typically this is set within Page_Load() or a post back event handler.

When null/nothing, no field gets initial focus. It defaults to null/nothing.

Example

Set focus to a textbox associated with TextBox1:

[C#]

PeterBlum.DES.Globals.Page.InitialFocusControl = TextBox1;

[VB]

PeterBlum.DES.Globals.Page.InitialFocusControl = TextBox1

Page.SetFocus()

ASP.NET 2 and higher.

The InitialFocusControl property serves the same purpose as the Page.SetFocus() method. If you use both, they
will each set up their JavaScript and the last one to run its JavaScript will establish focus.

Recommendation: Use the InitialFocusControl property.

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.currentculture(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/ydy4x04a(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.createspecificculture(vs.71).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 161 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 JavaScriptEnabled (Boolean) – Determines if the browser really has JavaScript enabled. It automatically detects if
JavaScript is enabled after the first post back for a session. Prior to that first post back, it is true. After that, it is true
when JavaScript is enabled and false when it is not.

When false, the page will be generated as if the browser does not support JavaScript. No controls will output
JavaScript and may draw themselves differently, knowing that a client-side only feature that doesn’t work is
inappropriate to output. The server side will handle these controls gracefully on post back.

This feature stores its state in the Session collection. If the Session is not working or has been cleared, it will reset to
true and attempt to resolve the JavaScript state on the next post back.

If you do not want this detection feature enabled, set DetectJavaScript to false.

You can set this value directly in Page_Load(). It lets you turn off all of DES’s JavaScript features on demand. For
example, your customers can identify if they use JavaScript on their browser in a configuration screen. It only affects the
current page so set it on each page where needed.

 DetectJavaScript (Boolean) – When true, the JavaScriptEnabled property will monitor for JavaScript support. When
false, it will not. It defaults to the global DefaultDetectJavaScript property, which defaults to true. You set
DefaultDetectJavaScript with the Global Settings Editor.

 PageIsLoadingMsg (string) – The error message to display on the client-side if the user interacts with a control before it
is initialized. It defaults to “Page is loading. Please wait.”.

 IsPostBack (Boolean) - DES behaves differently depending on the state of the Page.IsPostBack property. Sometimes
users need to control this behavior. This property reflects the current state of Page.IsPostBack. However, the user can
change its value, either to false (not postback) or to true (postback). Here are features that use this property:

o The ValidationSummary control only shows up when this is true.

o The Validator’s NoErrorFormatter.Mode property.

o PeterBlum.DES.Globals.Page.ShowAlertOnSubmit uses this to build an alert that appears after postback.

o PeterBlum.DES.Globals.Page.FocusOnSubmit can sets the focus after post back.

o The <form onreset=> code varies based on this.

 Validators (PeterBlum.DES.ValidatorCollection) – A collection of the Validators on this page. Available for page
developers to iterate through as they need to review and modify settings.

 SetFocusFunctionName (string) – The name of a client-side function that is called whenever DES attempts to set focus
to a field with an error. Use this function when the field is invisible and you want to show it. For example, if your fields
are in a tabbed user interface, a field with the error is invisible when on a tabbed panel that is not visible. Your function
can entirely replace the built in focus setting code. For example, if the field is a RichTextBox and it has a specialized
JavaScript function to select the entire text when setting focus, use this.

The function must take one parameter, the element that is getting the focus. It is an object, defined in DOM/DHTML,
such as the <input> tag for a textbox. One key property of every element is its 'id'. Use that to determine the element so
you know what you are attempting to act on.

The function must return a Boolean value where true means set focus and false means do not set focus. When you
replace the focus setting code with your own, return false.

It defaults to "".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Your function should appear on the page that is generated.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 162 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

In this example, the parent of element id ‘TextBox1’ may be invisible. This JavaScript code makes it visible and returns
true to indicate that it can set focus. PeterBlum.DES.Globals.Page.SetFocusFunctionName is set to "ShowTextBox1".

function ShowTextBox1(pFld)
{
 if (pFld.id == 'TextBox1')
 pFld.parentNode.style.visibility = 'inherit';
 return true;
}

 EnableButtonImageEffects (enum PeterBlum.DES.EnableButtonImageEffects) – Many buttons can show up to 3
images: normal, pressed, and mouseover. You only need to specify the name of the normal image and provide two more
with the same name + “pressed” and “mouseover”. DES will “sniff” your local folder to detect these files. The sniffing
cannot see all possible URLs, including those starting with “http://”. Use this property to override the sniffer and specify
that the images are present or not. Alternatively, the URL can be pipe delimited with URLs for normal|pressed|mouseover.

The enumerated type PeterBlum.DES.EnableButtonImageEffects has these values:

o None – Never use image effects.

o Always – Always use image effects. Assume that all image files are available.

o Auto – Detect the files, if possible before using them.

o Pressed – Always set up for pressed. Never set up for mouse over.

o MouseOver – Always set up for mouseover. Never set up for pressed.

It defaults to EnableButtonImageEffects.Auto. There is no global setting for this property.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 163 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

SpinnerManager Property
The PeterBlum.DES.Globals.Page class and PageManager control offer the SpinnerManager property to customize the
look and behavior of spinners found on time and numeric textboxes throughout DES. Each of these properties has a default
that is set within the Global Settings Editor in the “SpinnerManager Defaults” section.

 SpinnerManager.IncrementButtonUrl (string) – The up arrow buttons shown in spinners (used by the time and
numeric textboxes throughout DES.) This string must be assigned to a URL to an image representing the concept “Next”.
It’s used by both the Next Minutes and Next Hours buttons.

It defaults to value of the DefaultIncrementButtonUrl property which is set in the Global Settings Editor and
defaults to "{APPEARANCE}/Shared/UpArrow1.gif" ().

The tag uses the text “+” for the alt= attribute. (It cannot be customized.)

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The IncrementButtonUrl property should refer to the normal image. DES will detect the presence of the other two files.
If any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the URL
is a virtual path to a file. You can manage this capability with the
PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the pressed
image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 SpinnerManager.DecrementButtonUrl (string) – The down arrow buttons shown in spinners (used by the time and
numeric textboxes throughout DES.) This string must be assigned to a URL to an image representing the concept
“Previous”. It’s used by both the Previous Minutes and Previous Hours buttons.

It defaults to value of the DefaultDecrementButtonUrl property which is set in the Global Settings Editor and
defaults to "{APPEARANCE}/Shared/DnArrow1.gif" ().

The tag uses the text “-” for the alt= attribute. (It cannot be customized.)

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The DecrementButtonUrl property should refer to the normal image. DES will detect the presence of the other two files.
If any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the URL

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 164 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

is a virtual path to a file. You can manage this capability with the
PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the pressed
image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 SpinnerManager.AutoRepeatSpeed1 (int) – The number of milliseconds to wait between each change to the textbox’s
value while the user holds the mouse down. This time is used for the first 5 command executions. AutoRepeatSpeed2 is
used after that.

It defaults to value of the DefaultAutoRepeatSpeed1 property which is set in the Global Settings Editor and defaults
to 500 (.5 seconds).

 SpinnerManager.AutoRepeatSpeed2 (int) – The number of milliseconds to wait between each change to the textbox’s
value while the user holds the mouse down. This time is used after the first 5 command executions. AutoRepeatSpeed1
is used before that.

It defaults to value of the DefaultAutoRepeatSpeed2 property which is set in the Global Settings Editor and defaults
to 250 (.25 seconds).

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 165 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Debugging PeterBlum.DES.Globals.Page Properties
If you are uncertain that the values set in PeterBlum.DES.Globals.Page are correct, use the
PeterBlum.DES.Globals.Page.DescribeProperties() method. It returns a string that you can assign to a
Label or LiteralControl control to show on the page or you can set up <@ Page Trace="true" > and output them using
Page.Trace.Write().

PeterBlum.DES.Globals.Page.DescribeProperties(showHTML)

showHTML

Pass true to format the text in HTML format (as a table) and false to format it as a carriage return delimited set
of lines useful to output to a file or other system that cannot use HTML.

Call it after you have set any properties on PeterBlum.DES.Globals.Page, like this.

DebugLabel1.Text = PeterBlum.DES.Globals.Page.DescribeProperties(true)

Page.Trace.Write(PeterBlum.DES.Globals.Page.DescribeProperties(false))

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 166 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Methods on PeterBlum.DES.Globals.Page
These methods can assist you in page development.

AttachCodeToEvent Method
Adds JavaScript to a client-side event on a control. This is a replacement for this type of code:
Control.Attributes.Add("oneventname", "your code"). It builds a wrapper around your code that safely
merges your code with any code that is already assigned to that event, either before or after the existing code. For example,
the IntegerTextBox is already using the onfocus event. Use this to combine your own onfocus code with that found in the
IntegerTextBox.

[C#]

public void AttachCodeToEvent(Control pControl, string pEventName,
 string pCode, bool pFirst)

[VB]

Public Sub AttachCodeToEvent(ByVal pControl As Control,
 ByVal pEventName As String, ByVal pCode As String,
 ByVal pFirst As Boolean)

Parameters

pControl

A reference to the control that gets the event.

pEventName

A string that holds the name of the event. It is case sensitive and must match real event names specified in DHTML
and DOM or it will not be called by the browser.

Most common events on controls: onfocus, onblur, onclick, onchange, onkeypress, onkeydown.

pCode

Your JavaScript code. Be sure that it is completely valid code or you will encounter JavaScript errors as the page is
loaded. Since it may be attached to other JavaScript code, it should end in a valid statement terminator, which is
either a semicolon (;) or closing bracket (}).

pFirst

When true, your code executes before any code already assigned to the event. When false, it executes after any
previously assigned code.

This event never assigns your code directly to the Control.Attributes collection. Instead, it creates client-side code that runs
when the page is loaded, updating anything already on the event. This avoids conflicts between two users of the same attribute
value. (For example, the IntegerTextBox does this: Attributes.Add("onkeypress", "[code]") in the prerender event, overwriting
anything you may have assigned to it.)

Example

Add some code to the onblur event of an IntegerTextBox. While normally you would write
IntegerTextBox1.Attributes.Add("onblur", "[your code]"), to avoid conflicts, you use
PeterBlum.DES.Globals.Page.AttachCodeToEvent() like this.

[C#]

PeterBlum.DES.Globals.Page.AttachCodeToEvent(IntegerTextBox1,
 "onblur", "[your code]", true);

[VB]

PeterBlum.DES.Globals.Page.AttachCodeToEvent(IntegerTextBox1, _
 "onblur", "[your code]", True)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 167 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Establishing Localization for the Web Form
ASP.NET provides extensive details on how dates, times, and numbers can be localized within the CultureInfo object. Every
web form automatically has a CultureInfo object loaded into the current thread’s
System.Globalization.CultureInfo.CurrentCulture object and all Peter’s Data Entry Suite controls use it through the
PeterBlum.DES.Globals.Page.CultureInfo property. This makes it easy to define a culture across the page.

Here are several ways to establish the current culture in the PeterBlum.DES.Globals.Page.CultureInfo property.

Click on any of these topics to jump to them:

 Localization for the Entire Web Site

 Default Localization for a Web Form

 Change Localization Based on the User’s Culture

 For the Entire Site

 For the Current Page

Localization for the Entire Web Site
You can set the default CultureInfo object in the web.config file using this syntax:

<configuration>
 <system.web>
 <globalization culture="id-ID" />
 </system.web>
</configuration>

Determine the value for id-ID from the list shown on the CultureInfo overview topic in the .net docs.

Default Localization for a Web Form
You can establish a CultureInfo object that affects one page within the <% @Page %> tag. Use this technique to establish a
default value. You can override it if users have different cultures by using the techniques described in the next section.

<% @Page culture="id-ID" %>

Determine the value for id-ID from the list shown on the CultureInfo overview topic in the .net docs.

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.currentculture(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 168 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Change Localization Based on the User’s Culture
When you site supports different cultures, you will create some technique to recognize the user’s culture. Perhaps when they
visit, you ask for their culture. You can get their preferred culture identifier from their browser by checking the
Request.UserLanguages property, although this requires the user to set up their browser and many users do not do this.

There are two ways to establish the user’s culture:

Click on any of these topics to jump to them:

 For the Entire Site

 For the Current Page

For the Entire Site

The Global.asax file provides the method Application_BeginRequest() to execute code that runs whenever any
web form is opened. Use it to retrieve the desired CultureInfo object and assign it to the current thread’s CurrentCulture
property.

[C#]

protected void Application_BeginRequest(object sender, EventArgs e)
{
 string vCultureID = code that determines the ID;
 System.Threading.Thread.CurrentThread.CurrentCulture =

System.Globalization.CultureInfo.CreateSpecificCulture(vCultureID);
}

[VB]

Protected Sub Application_BeginRequest(ByVal sender As Object, _
ByVal e As EventArgs)

 Dim vCultureID As string = code that determines the ID
 System.Threading.Thread.CurrentThread.CurrentCulture = _

System.Globalization.CultureInfo.CreateSpecificCulture(vCultureID)
End Sub

If you want to customize the CultureInfo object, you must clone the object retrieved by CreateSpecificCulture()
because Microsoft has made the object return read-only. They provided a Clone() method to help.

[C#]

using System.Globalization;
...
protected void Application_BeginRequest(object sender, EventArgs e)
{
 string vCultureID = code that determines the ID;
 CultureInfo vCultureInfo = (CultureInfo)

CultureInfo.CreateSpecificCulture(vCultureID).Clone();
 vCultureInfo.DateTimeFormat.ShortDatePattern = "MM-dd-yyyy";
 vCultureInfo.DateTimeFormat.DateSeparator = "-";
 System.Threading.Thread.CurrentThread.CurrentCulture = vCultureInfo;
}

http://msdn2.microsoft.com/en-us/library/system.web.httprequest.userlanguages(vs.71).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 169 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

Imports System.Globalization
...
Protected Sub Application_BeginRequest(ByVal sender As Object, _

ByVal e As EventArgs)
 Dim vCultureID As string = code that determines the ID
 Dim vCultureInfo As CultureInfo = _

CType(CultureInfo.CreateSpecificCulture(vCultureID).Clone(), _
 CultureInfo)

 vCultureInfo.DateTimeFormat.ShortDatePattern = "MM-dd-yyyy"
 vCultureInfo.DateTimeFormat.DateSeparator = "-"
 System.Threading.Thread.CurrentThread.CurrentCulture = vCultureInfo
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 170 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

For the Current Page

Use the Page_Init() method to retrieve the desired CultureInfo object and assign it to the
PeterBlum.DES.Globals.Page.CultureInfo property.

Alert: Always set up the culture prior to getting or setting any value that uses culture on these controls.

[C#]

protected void Page_Init(object sender, EventArgs e)
{
 string vCultureID = code that determines the ID;
 PeterBlum.DES.Globals.Page.CultureInfo =

System.Globalization.CultureInfo.CreateSpecificCulture(vCultureID);
}

[VB]

Protected Sub Page_Init(ByVal sender As Object, _
ByVal e As EventArgs)

 Dim vCultureID As string = code that determines the ID
 PeterBlum.DES.Globals.Page.CultureInfo = _

System.Globalization.CultureInfo.CreateSpecificCulture(vCultureID)
End Sub

If you want to customize the CultureInfo object, you must clone the object retrieved by CreateSpecificCulture()
because Microsoft has made the object return read-only. They provided a Clone() method to help.

[C#]

using System.Globalization;
...
protected void Page_Init(object sender, EventArgs e)
{
 string vCultureID = code that determines the ID;
 vCultureInfo = (CultureInfo)CultureInfo.CreateSpecificCulture(vCultureID).Clone();
 vCultureInfo.DateTimeFormat.ShortDatePattern = "MM-dd-yyyy";
 vCultureInfo.DateTimeFormat.DateSeparator = "-";
 PeterBlum.DES.Globals.Page.CultureInfo = vCultureInfo;
}

[VB]

Imports System.Globalization
...
Protected Sub Page_Init(ByVal sender As Object, _

ByVal e As EventArgs)
 Dim vCultureID As string = code that determines the ID
 Dim vCultureInfo As CultureInfo = _

CType(CultureInfo.CreateSpecificCulture(vCultureID).Clone(), CultureInfo)
 vCultureInfo.DateTimeFormat.ShortDatePattern = "MM-dd-yyyy"
 vCultureInfo.DateTimeFormat.DateSeparator = "-"
 PeterBlum.DES.Globals.Page.CultureInfo = vCultureInfo
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 171 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using Style Sheets
Each of these controls utilizes cascading style sheet definitions for their appearance. Peter’s Data Entry Suite provides many
style sheet files that provide the default appearance. You edit these style sheet files to customize the appearance. The files are
heavily documented to assist you.

There are separate style sheet files for individual types of controls, such as Calendar.css for the Calendar control and
Validation.css for Validator controls. See “Identifying the Style Sheet File for a Specific Control”.

Each page’s <head> tag needs <link> tag to the style sheet files used by the Peter’s Data Entry Suite controls. With little
(ASP.NET 1.x) or no (ASP.NET 2.0) set up on each page, DES will insert the <link> tags for you. See “Adding Style Sheet
Files To The Page”. When it sets them up, it uses a default URL to each file which can be overridden by settings in your
web.config file and in Page_Load(). See “Customizing the URLs to Each Style Sheet File”.

While there are many style sheet files, DES is very smart about their usage. It gets only the files needed by the controls on the
page. Then in compresses them and combines them into a single <link> tag to minimize their impact on the page’s load
time. See “Compressing and Merging Files”. This compression phase also supports the ASP.NET URL token “~/” and
“{APPEARANCE}” token so you can use the styles background: url(~/folder/filename.gif)and
background: url({APPEARANCE}folder/filename.gif).

Since different browsers sometimes need different style sheet definitions, you can have DES automatically swap a style sheet
class name at runtime based on the browser. See “Browser Sensitive Style Sheet Class Names”.

Click on any of these topics to jump to them:

 Adding Style Sheet Files To The Page

 ASP.NET 2 and above Users

 ASP.NET 1.x Users

 Identifying the Style Sheet File for a Specific Control

 Customizing the URLs to Each Style Sheet File

 Changing the URLs globally

 Changing the URL on a Page

 Disabling the Output of Link Tags Globally

 Disabling the Output of Link Tags on a Page

 Browser Sensitive Style Sheet Class Names

 Compressing and Merging Files

 Troubleshooting: How to see what DES output

 Troubleshooting: Changing the URL to GetFiles.aspx

 Special Parsing Features

 Support for Your Own Style Sheet Files

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 172 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding Style Sheet Files To The Page
HTML requires the <link> tag in the <head> section of your web form to attach each style sheet file:

<link href="[URL to your css file]" type="text/css" rel="stylesheet" />

DES creates this <link> tag for you. It also merges and compresses all requested style sheet files into a single <link> tag.
See “Compressing and Merging Files” for details.

Hint: If any popup appears transparent or a control is poorly formatted, you have not established the style sheets properly.

ASP.NET 2 and above Users
Any web form with the runat=server property in the <head> tag will automatically add the <link> tags to the
appropriate style sheet files.

Troubleshooting

If you do not see the affects of the style sheet files:

 Confirm that you have <head runat="server"> instead of <head>

 View the HTML output of the page. It should have a <link> tag identifying GetFiles.aspx or DESGetFiles.aspx,
like in this example:

<link href="/WebSite1/DES/GetFiles.aspx?type=styles&more parameters"
rel="stylesheet" type="text/css" />

or

<link href="DESGetFiles.aspx?type=styles&more parameters"
rel="stylesheet" type="text/css" />

See “Compressing and Merging Files” for configuration issues with GetFiles.aspx.

 If you do not see the <link> tag, add this line into the <head> tag’s inner HTML:

<%= PeterBlum.DES.StyleSheetManager.GetLinkTags() %>

See the next section for an example.

Typically this is needed when the <head> tag contains the <% %> tags. This is a limitation of the HtmlForm object
that prevents adding child controls to it. When you are not seeing the <link> tag in the HTML output, set <@ Page
trace="true" >. When you run the page, the trace will describe what happened when it attempted to add the
<link> tags.

 DES can output the contents returned by GetFiles.aspx to a page for your review. See “Troubleshooting: How to see
what DES output”. If any of the files contents are missing, most likely the URL DES is using to retrieve the file does not
point to a file. Correct the location of the file or specify a different URL. See “Customizing the URLs to Each Style Sheet
File”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 173 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

ASP.NET 1.x Users
DES provides the PeterBlum.DES.StyleSheetManager.GetLinkTags() method to return the exact <link> tag
text to your page. Call it within the <head> tag as shown here:

<html>
 <head>
 <title>WebForm1</title>

[various meta tags]
<%= PeterBlum.DES.StyleSheetManager.GetLinkTags() %>

 </head>

Troubleshooting

If you do not see the affects of the style sheet files:

 View the HTML output of the page. It should have a <link> tag identifying GetFiles.aspx or DESGetFiles.aspx,
like in this example:

<link href="/WebSite1/DES/GetFiles.aspx?type=styles&more parameters"
rel="stylesheet" type="text/css" />

or

<link href="DESGetFiles.aspx?type=styles&more parameters"
rel="stylesheet" type="text/css" />

See “Compressing and Merging Files” for configuration issues with GetFiles.aspx.

 DES can output the contents returned by GetFiles.aspx to a page for your review. See “Troubleshooting: How to see
what DES output”. If any of the files contents are missing, most likely the URL DES is using to retrieve the file does not
point to a file. Correct the location of the file or specify a different URL. See “Customizing the URLs to Each Style Sheet
File”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 174 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Identifying the Style Sheet File for a Specific Control
DES comes with the following style sheet files in subfolders of the DES\Appearance folder in your web application. The
subfolders are by product module. These files are heavily documented to assist you in their editing.

Folder/Filename Controls Supported

Date And Time/Calendar.css Calendar, PopupCalendar, MultiSelectionCalendar. The popup calendars within the
DateTextBox and AnniversaryTextBox

Date And Time/
DateAndTimeTextBoxes.css

DateTextBox, MonthYearTextBox, and AnniversaryTextBox.

Date And Time/
MonthYearPicker.css

MonthYearPicker and PopupMonthYearPicker. The popup MonthYearPickers within
Calendars and MonthYearTextBox.

Date And Time/
MultiSelectionCalendar.css

MultiSelectionCalendar

Date And Time/SpecialDates.css Calendar and MultiSelectionCalendar when using the SpecialDates control

Date And Time/TimePicker.css TimePicker and PopupTimePicker. The popup TimePicker within the
TimeOfDayTextBox and DurationTextBox.

Interactive Pages/
InteractivePages.css

CalculationController, FieldStateController, MultiFieldStateController,
FSCOnCommand, and MultiFSCOnCommand.

Interactive Pages/Menu.css ContextMenu including those within other DES controls

Interactive Pages/PopupHints.css The PopupHints feature used by HintFormatters

Interactive Pages/TextCounter.css TextCounter

TextBoxes/TextBoxes.css TextBox, FilteredTextBox, IntegerTextBox, DecimalTextBox, CurrencyTextBox,
PercentTextBox, MultiSegmentDataEntry

Validation/
PopupErrorFormatter.css

The PopupHints feature used by PopupErrorFormatters

Validation/Validation.css All Validators, ValidationSummary, RequiredFieldMarker, and
RequiredFieldsDescription.

You can customize these files as needed. The Peter’s Data Entry Suite controls have numerous properties that refer to style
sheet class names. They all end in “CssClass”. The documentation will show you the default name, which refers to a name
found in each of these three files. You can edit these files directly or create new styles in separate style sheet files, so long as
the CssClass property refers to a name from one of the <link> or <style> tags on the page.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 175 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Customizing the URLs to Each Style Sheet File
You can relocate the style sheet files or use different files. This section describes how to change the URL to a file globally and
on a page level.

Click on any of these topics to jump to them:

 Changing the URLs globally

 Changing the URL on a Page

 Disabling the Output of Link Tags Globally

 Disabling the Output of Link Tags on a Page

Changing the URLs globally
Use the web.config file or Application_Start() method to define the URLs of each files. You can change one, a few
or all, as needed. These settings will affect all pages in your web application, except when overridden on the page (see the
next topic).

Note: If you have moved the entire Appearance folder, you can set the DES_AppearanceVirtualPath key in web.config and it
will adjust the location of all style sheet files it contains. You do not need to use the instructions here. See the Installation
Guide for details on DES_AppearanceVirtualPath.

Using the web.config file

Use these keys in the <appSettings> section of web.config. Only use keys for the controls you have alternative files.
Any that continue to use the default can be omitted.

<add key="DES_StyleSheetCalendar" value="[url]/[filename].css" />
<add key="DES_StyleSheetDateAndTimeTextBoxes" value="[url]/[filename].css" />
<add key="DES_StyleSheetMonthYearPicker" value="[url]/[filename].css" />
<add key="DES_StyleSheetMultiSelectionCalendar" value="[url]/[filename].css" />
<add key="DES_StyleSheetSpecialDates" value="[url]/[filename].css" />
<add key="DES_StyleSheetTimePicker" value="[url]/[filename].css" />
<add key="DES_StyleSheetInteractivePages" value="[url]/[filename].css" />
<add key="DES_StyleSheetMenu" value="[url]/[filename].css" />
<add key="DES_StyleSheetPopupHints" value="[url]/[filename].css" />
<add key="DES_StyleSheetTextCounter" value="[url]/[filename].css" />
<add key="DES_StyleSheetTextBoxes" value="[url]/[filename].css" />
<add key="DES_StyleSheetPopupErrorFormatter" value="[url]/[filename].css" />
<add key="DES_StyleSheetValidation" value="[url]/[filename].css" />

Note: The .Net framework uses the tilde (~) character to indicate the web application root path. For any files within the
application folder, it’s recommended that you start the URL with this symbol. For example, “~/StyleSheets/Calendar.css”.

WARNING: Do not use URLs that start with http:// or https:// unless you turn off the merge and compression feature. See
“Modifying the merging and compression features”.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 176 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Programmatically within Application_Start()

Use the method PeterBlum.DES.StyleSheetManager.SetDefaultUrl() to specify a different URL.

[C#]

void SetDefaultUrl(PeterBlum.DES.StyleSheetFiles pStyleSheetFile, string pUrl)

[VB]

Sub SetDefaultUrl(ByVal pStyleSheetFile As PeterBlum.DES.StyleSheetFiles,_
 ByVal pUrl As String)

Parameters

pStyleSheetFile

Specifies the style sheet file’s usage (association with controls). The enumerated type
PeterBlum.DES.StyleSheetFiles has these values:

o Calendar
o DateAndTime
o InteractivePages
o Menu
o MonthYearPicker
o MultiSelectionCalendar
o PopupErrorFormatter
o PopupHints
o SpecialDates
o TextBoxes
o TextCounter
o TimePicker
o Validation
o VAMCompatible

pUrl

The URL used by the browser to access the file. It can use the ~ character for the web application root folder.

Example

[C#]

protected void Application_Start(Object sender, EventArgs e)
{
 PeterBlum.DES.StyleSheetManager.SetDefaultUrl(
 PeterBlum.DES.StyleSheetFiles.Calendar, "~/StyleSheets/Calendar.css");
}

[VB]

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 PeterBlum.DES.StyleSheetManager.SetDefaultUrl(_
 PeterBlum.DES.StyleSheetFiles.Calendar, "~/StyleSheets/Calendar.css")
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 177 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Changing the URL on a Page
Sometimes you want to establish a certain look based on the page. For example, based on the type of customer signed in. You
can do this programmatically in Page_Load().

Use the method PeterBlum.DES.StyleSheetManager.OverrideDefaultUrl() to specify a different URL.

WARNING: Using OverrideDefaultUrl() will disable the output of compressed style sheet files into a single <link> tag for
this page request. Instead, there will be individual <link> tags to the actual file contents.

[C#]

void OverrideDefaultUrl(PeterBlum.DES.StyleSheetFiles pStyleSheetFile, string pUrl)

[VB]

Sub OverrideDefaultUrl(ByVal pStyleSheetFile As PeterBlum.DES.StyleSheetFiles,_
 ByVal pUrl As String)

Parameters

pStyleSheetFile

Specifies the style sheet file’s usage (association with controls). The enumerated type
PeterBlum.DES.StyleSheetFiles has these values:

o Calendar
o DateAndTime
o InteractivePages
o Menu
o MonthYearPicker
o MultiSelectionCalendar
o PopupErrorFormatter
o PopupHints
o SpecialDates
o TextBoxes
o TextCounter
o TimePicker
o Validation
o VAMCompatible

pUrl

The URL used by the browser to access the file. It can use the ~ character for the web application root folder.

Example

[C#]

protected void Page_Load(Object sender, EventArgs e)
{
 PeterBlum.DES.StyleSheetManager.OverrideDefaultUrl(
 PeterBlum.DES.StyleSheetFiles.Calendar, "~/StyleSheets/Calendar.css");
}

[VB]

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 PeterBlum.DES.StyleSheetManager.OverrideDefaultUrl(_
 PeterBlum.DES.StyleSheetFiles.Calendar, "~/StyleSheets/Calendar.css")
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 178 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Disabling the Output of Link Tags Globally
If you add the DES style sheets to other style sheet files, you may need to disable the generation of <link> tags. This can be
done globally and on the page level.

Use the web.config file or Application_Start() method to disable one or more style sheet files. These settings will
affect all pages in your web application, except when overridden on the page.

Using the web.config file

Use these keys in the <appSettings> section of web.config. Only use keys for the controls you have alternative files.
Any that continue to use the default can be omitted.

<add key="DES_StyleSheetCalendar" value="" />
<add key="DES_StyleSheetDateAndTimeTextBoxes" value=""/>
<add key="DES_StyleSheetMonthYearPicker" value=""/>
<add key="DES_StyleSheetMultiSelectionCalendar" value=""/>
<add key="DES_StyleSheetSpecialDates" value=""/>
<add key="DES_StyleSheetTimePicker" value=""/>
<add key="DES_StyleSheetInteractivePages" value=""/>
<add key="DES_StyleSheetMenu" value=""/>
<add key="DES_StyleSheetPopupHints" value=""/>
<add key="DES_StyleSheetTextCounter" value=""/>
<add key="DES_StyleSheetTextBoxes" value=""/>
<add key="DES_StyleSheetPopupErrorFormatter" value=""/>
<add key="DES_StyleSheetValidation" value=""/>

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 179 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Programmatically within Application_Start()

Use the method PeterBlum.DES.StyleSheetManager.RemoveDefaultUrl() to specify a URL of "".

[C#]

void RemoveDefaultUrl(PeterBlum.DES.StyleSheetFiles pStyleSheetFile)

[VB]

Sub RemoveDefaultUrl(ByVal pStyleSheetFile As PeterBlum.DES.StyleSheetFiles)

Parameters

pStyleSheetFile

Specifies the style sheet file’s usage (association with controls). The enumerated type
PeterBlum.DES.StyleSheetFiles has these values:

o Calendar
o DateAndTime
o InteractivePages
o Menu
o MonthYearPicker
o MultiSelectionCalendar
o PopupErrorFormatter
o PopupHints
o SpecialDates
o TextBoxes
o TextCounter
o TimePicker
o Validation
o VAMCompatible

Example

[C#]

protected void Application_Start(Object sender, EventArgs e)
{
 PeterBlum.DES.StyleSheetManager.RemoveDefaultUrl(
 PeterBlum.DES.StyleSheetFiles.Calendar);
}

[VB]

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 PeterBlum.DES.StyleSheetManager.RemoveDefaultUrl(_
 PeterBlum.DES.StyleSheetFiles.Calendar)
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 180 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Disabling the Output of Link Tags on a Page
Use the method PeterBlum.DES.StyleSheetManager.Remove() to stop a single file from being output on this
page request.

If you want to disable all files at once, use this line:

PeterBlum.DES.Globals.Page.StyleSheetManager.Enabled = false

[C#]

void Remove(PeterBlum.DES.StyleSheetFiles pStyleSheetFile)

[VB]

Sub Remove(ByVal pStyleSheetFile As PeterBlum.DES.StyleSheetFiles)

Parameters

pStyleSheetFile

Specifies the style sheet file’s usage (association with controls). The enumerated type
PeterBlum.DES.StyleSheetFiles has these values:

o Calendar
o DateAndTime
o InteractivePages
o Menu
o MonthYearPicker
o MultiSelectionCalendar
o PopupErrorFormatter
o PopupHints
o SpecialDates
o TextBoxes
o TextCounter
o TimePicker
o Validation
o VAMCompatible

Example

[C#]

protected void Page_Load(Object sender, EventArgs e)
{
 PeterBlum.DES.StyleSheetManager.Remove(
 PeterBlum.DES.StyleSheetFiles.Calendar);
}

[VB]

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 PeterBlum.DES.StyleSheetManager.Remove(_
 PeterBlum.DES.StyleSheetFiles.Calendar)
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 181 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Browser Sensitive Style Sheet Class Names
When you assign a style sheet class name to any of Peter’s Data Entry Suite’s properties, you should expect that same name to
be outputted to the HTML. Not every style sheet class that you define works for every browser. For example, on Netscape
7.0x browsers, there was a bug that showed border lines on tables even when the table was invisible. The best solution for that
bug was to provide alternative style sheet classes for Netscape 7 that omitted the border lines.

With the Browser Sensitive Style Sheet Class Names feature, DES will switch the class name associated with a property
depending on the browser. This feature is very powerful, giving you the ability to map any style sheet class name to another
name. For example, DES automatically switches “DES_CalWeekRowsTable” to “DES_CalWeekRowsTable_NS70”
on Calendar when it detects Netscape 7.0x.

Replacing Class Names
Any time a style sheet class name property starts with an exclamation point (“!”) character, it will be reviewed for possible
replacement.

Here’s how use this feature.

First time – Add the CheckCssClass event

You will add an event handler to your web application that is passed the style sheet class names of any property that starts
with an exclamation point. At this point, the event handler method only returns null/Nothing. In the next topic, you will
add code to act on the style sheet class name.

1. Define a global method (such as in the Global.asax file or identified as static/Shared in another class) that has this
format:

[C#]

public static string MyCheckCssClass(string pCssClass,
 System.Web.UI.WebControls.WebControl pControl,
 PeterBlum.DES.TrueBrowser pBrowser)
{
 // your evaluation of the parameters goes here.
 // return a new style sheet class name or null to keep the same name
 return null;
}

[VB]

Public Shared Function MyCheckCssClass(ByVal pCssClass As String, _
 ByVal pControl As System.Web.UI.WebControls.WebControl, _
 ByVal pBrowser As PeterBlum.DES.TrueBrowser) As String _
 ' your evaluation of the parameters goes here.
 ' return a new style sheet class name or null to keep the same name
 Return Nothing
End Function

2. Attach the CheckCssClass event handler to your method. The event is defined on the
PeterBlum.DES.StyleSheetManager object. Do this in the Application_Start() method of
Global.asax.

[C#]

protected void Application_Start(Object sender, EventArgs e)
{
 PeterBlum.DES.StyleSheetManager.CheckCssClass
 += PeterBlum.DES.CheckCssClassHandler(MyCheckCssClass);
}

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 182 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 AddHandler PeterBlum.DES.StyleSheetManager.CheckCssClass _
 AddressOf MyCheckCssClass
End Sub

Each time – Adding a new style sheet class

1. Identify any style sheet classes that do not have the right appearance in a specific browser.

2. Create a new style sheet class that offers the correct appearance. It can be in the style sheet file that has the original or in
another file or <style> tag, so long as it is on the page when the control is on the page.

3. Edit the property of the control that refers to the original class name so that its name begins with an exclamation point
(“!”). For example, “DESCalControl” becomes “!DESCalControl”.

4. Add logic into your MyCheckCssClass() method that evaluates the parameters and determines if it should change the
class name. If it does change the name, return the new name. If it leaves it unchanged, return null/Nothing.

Here are the parameters of the MyCheckCssClass() method:

pControl

The DES control that contains the class name being evaluated. It can help optimize your function by only evaluating
names based on the type of control. You will have to test the type of this control. See the example shown below.

pBrowser

The TrueBrowser object. (See “The TrueBrowser Class”.) Its properties will identify the browser type and version.
You can ignore this parameter if you want to change the class based on some condition other than the type of
browser.

pCssClass

The initial class name, but without the leading exclamation point. When comparing strings, be aware that users may
not always follow the same case as the defined style class name. So perform case insensitive comparisons. In the
example, this is done by setting pCssClass to lowercase and matching to lowercase versions of the name.

Example

This logic demonstrates how DES handles the class name on Calendar that is affected by Netscape 7.0. For each new name, it
simply adds “_NS70” to the original name.

[C#]

public static string MyCheckCssClass(string pCssClass,
 System.Web.UI.WebControls.WebControl pControl,
 PeterBlum.DES.TrueBrowser pBrowser)
{
 // your evaluation of the parameters goes here.
 // return a new style sheet class name or null to keep the same name

string vCssClassLC = pCssClass.ToLower(); // for matching case insensitively
// Only Netscape 7.0x needs conversion because it has a bug
// that exposes borders when hidden. So only take action
// when it is a popup control.
// All classes for Netscape 7.0x are pCssClass + "_NS70"
if (vBrowser.NetscapeMoz &&
 (vBrowser.Version == new Version(7,0)))
{
// These are all for Calendar and only when it’s a popup.
// Skip if pControl is not that class
 if ((pControl is BaseCalendar) &&

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 183 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 (((WebControl)pControl).Parent is PeterBlum.DES.BasePopupToggle))
 switch (vCssClassLC)
 {
 case "des_calweekrowstable":
 return pCssClass + "_NS70";
 }

 }
 return null;
}

[VB]

Public Shared Function MyCheckCssClass(ByVal pCssClass As String, _
 ByVal pControl As System.Web.UI.WebControls.WebControl, _
 ByVal pBrowser As PeterBlum.DES.TrueBrowser _
) As String
 ' your evaluation of the parameters goes here.
 ' return a new style sheet class name or null to keep the same name

 Dim vCssClassLC As String
 = pCssClass.ToLower() ' for matching case insensitively

 ' Only Netscape 7.0x needs conversion because it has a bug
 ' that exposes borders when hidden. So only take action
 ' when it is a popup control.
 ' All classes for Netscape 7.0x are pCssClass + "_NS70"
 If vBrowser.NetscapeMoz And _
 (vBrowser.Version = New Version(7,0)) Then
 ' These are all for CS_Calendar and only when it's a popup.
 ' Skip if pControl is not that class
 If (TypeOf pControl Is BaseCalendar) And _
 (TypeOf pControl.Parent Is PeterBlum.DES.BasePopupToggle)
 Select vCssClassLC
 Case "des_calweekrowstable"
 Return pCssClass + "_NS70"
 End Select

 End If
 Return Nothing
End Function

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 184 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Compressing and Merging Files
Whenever DES adds its <link> tags to the page, it first optimizes your files for the fastest transmission with these features:

 All files are merged together, giving a single <link> tag on the page. That gives a single request and response with the
server. If you view the HTML output of a page, look for the <link> tag that uses the DES\GetFiles.aspx or
DESGetFiles.aspx file. Note: DES\GetFiles.aspx uses an actual file while DESGetFiles.aspx uses an HttpHandler.

 Files are cached in memory to limit disk based overhead.

 All comments are removed from cached files to greatly reduce their size. DES takes advantage of this feature by adding
extensive comments into the files to guide you while you edit them.

 You can further reduce their size by having DES remove most of the whitespace (spaces, tabs, and carriage returns).

 For browsers that support gzip and deflate encoding (which includes modern IE, FireFox, Opera and Safari), the file will
be transferred using one of those compression methods automatically. Note: Only when using the DESGetFiles.aspx
HttpHandler.

There are times you may prefer to see individual <link> tags and the original (uncompressed) contents of style sheets,
especially when tracking down bugs. As a result, you can turn off this feature.

Modifying the merging and compression features

Using the web.config file

Within the <appSettings> section of the web.config file, you can add this key:

<add key="DES_StyleSheetCompression" value="see below" />

Use these values in the value attribute:

 "SeparateFiles" or "S" – Do not merge the files. Output the original files in separate <link> tags. The
GetFiles.aspx URL will not be added to the page. URLs to the actual files are returned.

 "None" or "N" – Output the merged files but do not compress them. They are unchanged aside from being merged.

 "Comments" or "C" – Merge the files, removing all comments. This is the default when the key is omitted from
<appSettings>.

 "Full" or "F" – Merge the files, removing all comments, most space characters, tabs, and carriage returns.

Programmatically changing the settings globally and in individual web forms

If you want to set these values programmatically to affect the entire web application, you will add this line to the
Application_Start() method of your Global.asax file:

PeterBlum.DES.StyleSheetManager.DefaultCompression =
 PeterBlum.DES.StyleSheetCompression.value

where value is SeparateFiles, None, Comments, or Full.

If you want to change the compression on a single page, add this line to the Page_Load() method of your web form:

PeterBlum.DES.Globals.Page.StyleSheetManager.Compression =
 PeterBlum.DES.StyleSheetCompression.value

where value is SeparateFiles, None, Comments, or Full.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 185 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Troubleshooting: How to see what DES output
When using http://localhost, add desdebug=style to the querystring of your URL. For any domain, see go to “Exploring
The Current Settings: DES Debugging Reports” to setup DES’s debugging menu. Use the style sheet option from the DES
Debug menu.

Troubleshooting: Changing the URL to GetFiles.aspx
For ASP.NET 1.x users

Sometimes the default URL to the GetFiles.aspx file does not work. To limit problems, you can relocate GetFiles.aspx
into another folder, such as the web application root folder.

Then they tell DES where it is using the <appSettings> key in web.config:

<add key="DES_GetFilesVirtualPath" value="~/[URL]/GetFiles.aspx" />

Troubleshooting: Turning of Gzip/Deflate Compression
When using the DESGetFiles.aspx HttpHandler (the default for ASP.NET 2 and higher users), browsers will receive
compressed data using either gzip or deflate compression. If this is causing problems, you can disable this feature.

Add this key to the <appSettings> section of web.config:

<add key="DES_NoResponseCompression" value="" />

http://localhost/�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 186 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Special Parsing Features
A style sheet file is normally static. Putting it through DES’s compression system (see “Compressing and Merging Files”)
allows DES to parse and modify it. DES uses this to enhance the style sheet “url()” filepath token that is often used by the
background-image style.

The url() token only supports absolute and relative paths. It does not support the ASP.NET token “~/” that converts to the
web application root folder. Nor does it support the token “{APPEARANCE}” that DES maps to the Appearance folder
(“~/DES/Appearance”). This parser now supports both.

 Absolute path from the web application folder can use “~/” in place of the root folder name. When the domain root is the
same as the web application root, this is replaced by “/”. When they differ, the “~” is replaced by the folder path between
domain root and web app root.

background-image: url('~/DynamicData/Contents/Images/Back.gif');

is modified to

background-image: url('/DynamicData/Contents/Images/Back.gif');

or

background-image: url('/RootFolder/DynamicData/Contents/Images/Back.gif');

 When the image is located in a subfolder of the DES Appearance folder, start the URL with “{APPEARANCE}”. Do not
separate that token from the rest with a slash. It is inserted for you.

background-image: url('{APPEARANCE}Shared/BlueDot.gif');

is modified to

background-image: url('/DES/Appearance/Shared/BlueDot.gif');

or

background-image: url('/RootFolder/DES/Appearance/Shared/BlueDot.gif');

http://www.blooberry.com/indexdot/css/syntax/units/url.htm�
http://www.blooberry.com/indexdot/css/properties/colorbg/bgimage.htm�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 187 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Support for Your Own Style Sheet Files
You can take advantage of DES’s compression and file merging capabilities with your own style sheets. (See “Compressing
and Merging Files”.) This has several benefits:

 A single <link> tag delivers all style sheets, reducing the number of http requests to the server

 All comments and most whitespace are removed from your file, allowing you to include extensive inline documentation
without worrying about its transfer to the browser

 GZIP or DEFLATE compression is applied to the transfer automatically, usually reducing the transfer size by 60% or
more.

 You will be adding your files programmatically. You can write logic to includes the files only when needed.

DES supports up to custom 10 style sheet file paths. They are associated with the enumerated type
PeterBlum.DES.StyleSheetFiles, which has items for its own files (like Calendar and DateTextBox) and your files (User1,
User2, … User10.) You will map these User# types to specific URLs. For example:

PeterBlum.DES.StyleSheetFiles.User1 maps to “~/MyStyleSheets/StyleSheet1.css”.

Registering your Style Sheet Files
Before they can be used, you must register any style sheet files with DES. It can be done within the web.config file or the
Application_Start() method of Global.asax.

Using web.config

In the <appSettings> section of web.config, add this node for each file:

<add key="DES_StyleSheetUser[number]" value="url" />

Using the example above for User1:

<add key="DES_StyleSheetUser1" value="~/MyStyleSheets/StyleSheet1.css" />

Using the Application_Start() method

Add code in this format:

PeterBlum.DES.StyleSheetManager.SetDefaultUrl(
 PeterBlum.DES.StyleSheetFiles.User[number], "url")

Using the example above for User1:

PeterBlum.DES.StyleSheetManager.SetDefaultUrl(
 PeterBlum.DES.StyleSheetFiles.User1, "~/MyStyleSheets/StyleSheet1.css")

Including your Style Sheet Files on the Page
You will be adding your files programmatically. You can write logic to includes the files only when needed. The logic can go
in many places:

 The Page_Init() or Page_Load() method of the page, master page, or User Control.

 When a DataBoundControl (like GridView or DetailsView) adds elements that need the file, the code can go in
RowCreated or ItemCreated methods.

 Within the code of a custom control that has its own styles.

Simply call this method with the PeterBlum.DES.StyleSheetFiles enumerated value that you registered in web.config or
Application_Start():

PeterBlum.DES.Globals.Page.StyleSheetManager.Include(
 PeterBlum.DES.StyleSheetFiles.User[number])

Using the example above for User1:

PeterBlum.DES.Globals.Page.StyleSheetManager.Include(PeterBlum.DES.StyleSheetFiles.User1)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 188 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using Server.Transfer
ASP.NET 2.0 Note: This section is not needed for users of the ASP.NET 2.0 enhanced version of DES. However, it is harmless
to call these methods.

On pages that use the Server.Transfer() method to switch to another page, additional code is required. The
Transfer() method does not clear out the original page from memory and in fact passes the HttpContext with its
existing Request, Items and Handler properties. Thus the destination page acts like its still in the original page. DES needs to
reset the object it keeps in PeterBlum.DES.Globals.Page. You must provide code in two places.

Note: If you omit this code and the destination page uses DES’s controls, JavaScript will be rendered incorrectly to the page,
which means DES has no client-side presence or you will get JavaScript errors.

Prior to the Server.Transfer Call
Add this code immediately before your call to Server.Transfer():

PeterBlum.DES.Globals.BeforeServerTransfer()

In the Destination Page of the Server.Transfer Call
Add this code to the beginning of your Page_Load() method of the destination page. (It will not be harmful if it is called
when the same page is not called from Server.Transfer().)

PeterBlum.DES.Globals.AfterServerTransfer(Page)

where Page is the current page instance. Usually this parameter is Me.Page in VB or this.Page is C#.

Using Alternative HttpHandlers (including SharePoint)
DES needs to identify the current Page object, to which it keeps a reference in PeterBlum.DES.Globals.Page.OwnerPage.

Normally, when a Page object is constructed, this object is the current “HttpHandler”. DES retrieves the value from
HttpContext.Current.Handler and is all set. The Page is the current HttpHandler when the browser requests a URL
that specifies a web form with an aspx extension.

There are other types of HttpHandlers. You can create them to handle other page extensions. Third party products, like
Microsoft SharePoint, also use them.

When using SharePoint or any other HttpHandler, add this line of code as the first line of your Page_Load method:

PeterBlum.DES.Globals.UsingAltHttpHandler(Page)

where Page is the current page instance. Usually this parameter is Me.Page in VB or this.Page is C#.

Note: If you fail to do this, DES will throw an exception to remind you.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassTransferTopic2.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconhttphandlers.asp�
http://msdn.microsoft.com/msdnmag/issues/04/08/WebParts/�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 189 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using a Redistribution License
If you have a Redistribution License, you must programmatically assign the serial number to the appropriate property listed
below in the Page_Load() method. This is required on each page that uses DES controls. It defines the pages that are
licensed so that customers who receive your product and add their own pages cannot use your license on those pages.

Product or Module Property

Suite (complete product) PeterBlum.DES.Globals.Page.Suite_LicenseKey

Peter’s Professional Validation PeterBlum.DES.Globals.Page.ProfessionalValidation_LicenseKey

Peter’s More Validators PeterBlum.DES.Globals.Page.MoreValidators_LicenseKey

Peter’s TextBoxes PeterBlum.DES.Globals.Page.TextBoxes_LicenseKey

Peter’s Date and Time PeterBlum.DES.Globals.Page.DateAndTime_LicenseKey

Peter’s Interactive Pages PeterBlum.DES.Globals.Page.InteractivePages_LicenseKey

Peter’s Input Security PeterBlum.DES.Globals.Page.InputSecurity_LicenseKey

Example

Suppose that you have licenses for Peter’s Professional Validation with serial number 01-1212121212 and Peter’s More
Validators with serial number 12-2323232323.

[C#]

private void Page_Load(object sender, System.EventArgs e)
{
 PeterBlum.DES.Globals.Page.ProfessionalValidation_LicenseKey = "01-1212121212";
 PeterBlum.DES.Globals.Page.MoreValidators_LicenseKey = "12-2323232323";
}

[VB]

Private Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)_
 Handles MyBase.Load
 PeterBlum.DES.Globals.Page.ProfessionalValidation_LicenseKey = "01-1212121212"
 PeterBlum.DES.Globals.Page.MoreValidators_LicenseKey = "12-2323232323"
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 190 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

How ASP.NET Influences Peter’s Data Entry Suite

Themes and Skins
ASP.NET 2.0 introduces the concepts of Themes and Skins. Microsoft built this feature to update most properties of web
controls so you can build a kind of template and assign its name to the SkinID property. DES’s controls support Themes and
Skins with some limitations. Skins cannot be applied to properties in nested objects. This limitation applies to these
properties:

 All Enabler, Condition, Conditions, and ExtraControlsToRunThisAction properties throughout DES controls

 Validator.ErrorFormatter – See the ErrorFormatterSkinID property for an alternative. You can create an
ErrorFormatterSkin. Then set up a skin that sets the ErrorFormatterSkinID property. This will load the
ErrorFormatterSkin using the Themes and Skins system.

 Validator.HiliteFields

 CalculationController.Expression

 MultiFieldStateController and MultiFSCOnCommand.ControlsToChange

Automatic linking to the DES Style Sheet file
Each DES control uses style sheet definitions from several style sheet files. Normally, you have to assign a <link> tag to
each file to use the style sheets. ASP.NET 2.0 lets the <link> tag be created programmatically. DES takes advantage of this
capability.

See “Using Style Sheets”.

Localization
ASP.NET 2.0 introduces a syntax where the web control definitions can be mapped to a resource file (resx) that is local to the
web form. The syntax looks like this:

<tag:controlclass runat=server meta:resourcekey="key" [other properties]>

You can use the Properties Editor to set the key to your resource file using the “(Expressions)” property and selecting
Resources from the dropdownlist on the right. See the Visual Studio 2005 documentation for details on this syntax and how to
edit it in the Properties Editor.

DES already supports localization by using its String Lookup System. (See “The String Lookup System”.) The String Lookup
System has been built around the resource files stored in the App_GlobalResources folder. If you choose to use local
resources (stored in App_LocalResources), you will use the features described here.

DES makes every string property that has an associated LookupID property available to the ASP.NET 2.0 localization system.
For example, Validator.ErrorMessage has ErrorMessageLookupID. So ErrorMessage is supported.

Validation on AutoPostBack of the TextBox and other data entry controls
Most data entry controls that offer AutoPostBack provide these properties: ValidationGroup and CausesValidation. They
set up client-side validation prior to postback. If validation fails, the post back does not occur. See “Using Validation with
AutoPostBack” in the Validation User’s Guide.

ValidationGroup property on submit controls
ASP.NET 2.0 introduces Validation Groups to its own validators. In doing so, it adds the ValidationGroup property to each
submit control (Button, ImageButton, LinkButton). DES’s submit controls already have their own property for Validation
groups, Group. So the DES buttons now have two very similar properties.

DES will use the ValidationGroup property only when the Group property is blank. This way, you can use either. The
Properties Editor will hide the ValidationGroup property to limit its use. However, Intellisense will still show both.

http://msdn2.microsoft.com/library/wcyt4fxb(en-us,vs.80).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 191 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Page.SetFocus vs. PeterBlum.DES.Globals.Page.InitialFocusControl
The PeterBlum.DES.Globals.Page.InitialFocusControl property serves the same purpose as the Page.SetFocus()
method. If you use both, they will each set up their JavaScript and the last one to run its JavaScript will establish focus.

Recommendation: Use the InitialFocusControl property.

XHTML Compatibility
DES generates XHTML Strict compatible code.

Obsolete features found in the ASP.NET 1.x assemblies of DES
You no longer need to be concerned with the following due to improvements Microsoft made to ASP.NET 2.0:

 The ASP.NET Design Mode Extender (“ADME”) is not used.

 When using Server.Transfer(), you do not need to use the methods described in “Using Server.Transfer”.
You can continue to use these functions for existing code but they really do nothing.

 If you had problems where scripts were not output unless you called
PeterBlum.DES.Globals.Page.PagePreRegister(), those pages will now work without the call to
PagePreRegister(). Existing pages that use this function will continue to work.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 192 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Browser Support
DES scales down each of its controls depending on various characteristics of the browser. Usually this means client-side
scripting is disabled. It introduces the TrueBrowser class to get an accurate description of the browser requesting the page.

Click on any of these topics to jump to them:

 The TrueBrowser Class

 Customizing A TrueBrowser Object

 Extending Support For More Browsers

 Adjusting the ErrorFormatter Based On The Browser

The following browsers support all or almost all features of DES:

 Internet Explorer for Windows, v4 and higher

 Internet Explorer for Macintosh, v5 and higher. Limitations:

o No Spinners.

o No ContextMenus

o Keyboard commands in textboxes limited to letters and digits

o No keyboard support in Calendar or MonthYearPicker.

 All Mozilla-based browsers including FireFox for Windows and Macintosh, Netscape for Windows and Macintosh v6
and higher, Camino (for Macintosh). Limitations:

o No Spinners in Netscape 6.x or Mozilla 1.0.

o No keyboard support in Calendar or MonthYearPicker.

 Opera for Windows, v7 and higher. Limitations:

o No ContextMenus

o Keyboard commands in textboxes limited to letters and digits

o Keyboard support in Calendar or MonthYearPicker lacks support of arrow keys.

 Safari for Macintosh and Windows, OmniWeb 5.x (for Macintosh). Limitations:

o No ContextMenus

o No command key shortcuts

o No keyboard support in Calendar or MonthYearPicker.

o Safari v1.0 and 1.1 have a bug that prevents it from filtering out keystrokes in TextBoxes.

The following browsers have extensive limitations and scale down:

 Opera 5 and 6 for Windows and Macintosh. Has client-side validation support. Since these browsers do not support
updating text on the client side, error messages will not support runtime tokens. No keyboard filtering on textboxes. No
popups. No spinners. Many Interactive Pages features are disabled.

 Netscape 4 for Windows and Macintosh. These browsers have no client-side support. Validation is only handled on the
server-side via a postback. No keyboard filtering on textboxes. No popups. No spinners. Many Interactive Pages features
are disabled.

 Konqueror 2.x has many of the features, but have not been tested by PeterBlum.com. It was set up based on
documentation that indicates what HTML, JavaScript and DOM features they offer.

 All other browsers are scaled down to server-side only.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 193 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

The TrueBrowser Class
ASP.NET provides the browser requesting the page in the Request object’s Browser property. However, if you have set the
ClientTarget property on the Page object, you cannot determine the true browser because Request.Browser shows the
browser defined in ClientTarget. So DES keeps browser information in the PeterBlum.DES.TrueBrowser class.

The PeterBlum.DES.TrueBrowser class has numerous properties that are grouped into three distinct types:

 Browser type and version – These are read only and reflect the true browser.

 Browser capability flags – These tell DES if the browser supports a particular feature in HTML, JavaScript or DOM.

 DES product support as a result of the Browser capabilities – These let you know which features are disabled based on
the requesting browser.

You can use the PeterBlum.DES.Globals.Page.Browser property on to access the current TrueBrowser object of the
requesting browser.

Note: A separate instance of TrueBrowser is created for each unique browser (via the HTTP_USER_AGENT string). Once
created, it’s cached and used by all controls, pages, and users with the same browser until it gets cleared from the cache. If
you make a change to the object, the effects will impact all controls, pages, and users of the same browser.

Here are the properties on the TrueBrowser class.

Click on any of these topics to jump to them:

 Browser Type and Version

 Browser Capabilities

 Product Feature Support

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 194 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Browser Type and Version
This first group tells you what browser was detected. All of these properties are read only.

Note: This URL is helpful in learning about some of the less known browsers: http://www.quirksmode.org/

 UserAgent (string) – The HTTP_USER_AGENT string passed from the browser to tell what it is. It has been set to
lowercase. Use it to test a browser not listed below.

 IE (Boolean) – When true, it is Internet Explorer (all versions and all platforms)

 IEWin (Boolean) – When true, it is Internet Explorer for Windows (all versions)

 IEWin5 (Boolean) – When true, it is Internet Explorer for Windows 5.0 and higher

 IEWin6 (Boolean) – When true, it is Internet Explorer for Windows 6.0 and higher

 IEWin7 (Boolean) – When true, it is Internet Explorer for Windows 7.0 and higher

 IEMac (Boolean) – When true, it is Internet Explorer for Macintosh (all versions)

 NetscapeNav (Boolean) – When true, it is Netscape Navigator v1-4

 NetscapeMoz (Boolean) – When true, it is Netscape version 6 and higher. The Gecko property will also be true.

 Gecko (Boolean) – When true, it is running the Gecko engine from Netscape’s Mozilla project. This engine is
found in FireFox, Netscape 6 and higher, the Mozilla browsers from www.Mozilla.org and other parties who license
it, and Camino. If you get a Mozilla browser, this will be the only flag set to true.

 FireFox (Boolean) – When true, it is FireFox (all versions). The Gecko property will also be true.

 FireFox15 (Boolean) – When true, it is FireFox 1.5 and higher. The Gecko property will also be true.

 FireFox2 (Boolean) – When true, it is FireFox 2 and higher. The Gecko property will also be true.

 FireFox3 (Boolean) – When true, it is FireFox 3 and higher. The Gecko property will also be true.

 FireFox4 (Boolean) – When true, it is FireFox 4 and higher. The Gecko property will also be true.

 Opera (Boolean) – When true, it is Opera (versions up to 6)

 OperaPresto (Boolean) – Presto is the code name for the engine Opera introduced into version 7. When true,
Opera 7 or higher is installed.

 Opera8 (Boolean) – When true, it is Opera 8 and higher

 Opera9 (Boolean) – When true, it is Opera 9 and higher

 Konqueror (Boolean) – When true, it is Konqueror (all versions)

 AppleWebKit (Boolean) – When true, it uses the applewebkit engine. This includes Safari, Chrome, and
OmniWeb v5+. The properties below may also be set to true.

 Safari (Boolean) – When true, it is Apple Safari, Chrome, or OmniWeb v5.x. See also the Chrome property. When
Chrome is false, its actually Apple Safari. When its true, its actually Chrome. Both browsers share the Safari drawing
engine.

 Safari2 (Boolean) – When true, it is Apple Safari 2 and higher.

 Safari3 (Boolean) – When true, it is Apple Safari 3 and higher.

 Chrome (Boolean) – When true, it is Google Chrome. Note that Safari and Safari2 will both be true as well.

 Chrome2 (Boolean) – When true, it is Google Chrome v2. Note that Safari and Safari2 will both be true as
well.

 OmniWeb (Boolean) – When true, it is OmniWeb versions prior to 5. Version 5.x uses the Safari core code and is
covered by the Safari property.

http://www.quirksmode.org/�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 195 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 WebTV (Boolean) – When true, it is WebTV (all versions)

 ICab (Boolean) – When true, it is ICab (all versions)

 ICEBrowser (Boolean) – When true, it is ICEBrowser (formerly ICE Storm) from Icesoft. (all versions).

 UnknownBrowser (Boolean) – When true, the UserAgent was not recognized. This TrueBrowser object will
default to having most features disabled. You often use the Customize property to intercept this and configure the
TrueBrowser object yourself.

 Version (System.Version) – Contains the version found. Not used by the Mozilla browsers from www.Mozilla.org.

 GeckoVersionDate (Int) – When Gecko is true, this is the version of the Gecko engine underlying the various
browser’s from the Mozilla project. It includes Netscape 6+ and FireFox. It is a date in the format YYYYMMDD
and is represented as an integer here so that you can quickly compare another YYYYMMDD formatted integer to it.
When Gecko is false, this is 0.

 AppleWebKitVersion (System.Version) – When AppleWebKit is true, this is the version of that engine. It is null
when AppleWebKit is false.

 SupportsJavaScript1_2 (Boolean) – When true, the browser supports JavaScript 1.2. This is a requirement for
client-side validation.

 Windows (Boolean) – When true, the browser is running on the Windows Operating System.

 Mac (Boolean) – When true, the browser is running on the Macintosh Operating System.

 Unix (Boolean) – When true, the browser is running on a Unix Operating System.

 Linux (Boolean) – When true, the browser is running on a Linux Operating System.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 196 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Browser Capabilities
These properties describe specific browser capabilities that DES uses to determine its level of support. They initially are set
based on the browser type and version. These properties can be modified. Any changes are immediately imposed on the
properties in the Product Support section below.

These properties only affect how the server supplies HTML and JavaScript to the browser. Once on the browser, the
JavaScript code detects any and all features of about the browser without any help from these properties. The goal is to allow
the server to generate exactly the right code for the browser so the user only sees what the browser is capable of showing and
keep the size of the data downloaded to a minimum.

Note: When “Gecko” is listed as a browser, it indicates all Gecko-based browsers. To date, that is Netscape 6+, FireFox,
Mozilla, and Camino. When Safari is listed, it also includes OmniWeb 5.x.

 SupportsClassName (Boolean) – When true, the browser supports the className attribute on elements; in
other words, style sheets are supported. When false, Validator controls may automatically switch to a non-style
sheet setting. See “”. (Supported by IE Win 4+, IE Mac 5+, Gecko, Konqueror 2+, IceBrowser 5.2+, Opera 4+,
OperaPresto, Netscape 4+, Safari)

 SupportsInnerHTML (Boolean) – When true, the browser supports the innerHTML attribute on elements.
(Supported by IE Win 4+, IE Mac 5+, Gecko, Konqueror 2+, IceBrowser 5.2+, OperaPresto, Safari)

 SupportsOverflowStyle (Boolean) – When true, the browser supports overflow style sheet attribute. (Supported
by IE Win 4+, Gecko, OperaPresto, Safari)

 SupportsTooltip (Boolean) – When true, the browser supports the Title attribute that defines tooltips. When
false, the TooltipImageErrorFormatter may switch to another ErrorFormatter. See “”. (Supported by IE Win 4+, IE
Mac 5+, Gecko, Konqueror 2+, Opera 3+, OperaPresto, Safari)

 SupportsMultilineTooltip (Boolean) – When true, tool tips permit carriage return characters. The tool tip
properties have a token that gets substituted for a carriage return or space depending on this property. (Supported by
IE Win 4+, IE Mac 5+)

 DIVGoodContainer (Boolean) – When true, the <DIV> tag reliably supports absolute positioning and widths.
When false, DES may switch to using a <TABLE> for a popup. (Supported by all except Netscape 4.x)

 DIVSupportsStyleVisibility (Boolean) – When true, the browser supports the style=visibility attribute on
a <DIV> tag reliably. When false, all popup features are disabled. (Supported by IE Win 4+, IE Mac 5+, Gecko,
Opera 5+, Konqueror 2+, IceBrowser 5.2+, Safari)

 TABLESupportsStyleWidth (Boolean) – When true, the <TABLE> tag supports the style=width attribute
reliably. When false, <TABLE> tags require the property <TABLE WIDTH=value>. (Supported by IE Win 4+,
IE Mac 5+, Gecko, Opera 5+, Safari, Konqueror 2+, IceBrowser 5.2+)

 OnKeyDownExtendedKeys (string) – This is a space delimited list of extended keys supported by the browser’s
onkeydown and onkeypress events. The keys can be any from this list (with the spelling shown here): UP DOWN
LEFT RIGHT HOME END PAGEUP PAGEDOWN DELETE ENTER ESC HELP F1 F2 F3 F4 F5 F6 F7 F8 F9
F10 F11 F12. Context menus and tooltips with keystrokes use this to determine what to show. This way, if you
define a group of keystrokes for a command like this “UP + .”, the command shown will be the first from that list
that is either an alphanumeric key or in this property.

IE Win 5+ and Gecko support all of them. IE Mac 5+ supports the arrow keys. OperaPresto supports ENTER and
ESC.

 SupportsGetElementById (Boolean) – When true, the browser supports the DOM function
getElementById()for ID lookup. When this and SupportsDocument_All are both false, Validator,
ValidatorSummary, and FieldStateController controller are server-side only. (Supported by IE Win 5+, IE Mac 5+,
Gecko, Opera 5+, Konqueror, ICab, IceBrowser, Safari)

 SupportsDocument_All (Boolean) – When true, the browser supports the DHTML property document.all for
ID lookup. When this and SupportsGetElementById are both false, Validator, ValidatorSummary, and
FieldStateController controller are server-side only. (Supported by IE Win 4+, IE Mac 5+, ICab, IceBrowser,
OmniWeb, OperaPresto.)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 197 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 SupportsAttachEventOrAddEventListener (Boolean) – When true, the browser supports the DHTML method
AttachEvent() or the DOM method AddEventListener(). (Supported by IE Win 5+, Gecko, OperaPresto,
Safari.)

 SupportsOnContextMenuEvent (Boolean) – When true, the browser supports the oncontextmenu event handler.
When false, right click will not open a context menu. However, this doesn’t stop left-button support such as when
the user clicks on the Help, PopupCalendar, PopupMonthYearPicker or QuickDateMenu toggle button. (Supported
by IE Win 5+ and Gecko.)

 SupportsPNGImages (Boolean) – When true, the browser supports PNG image files. When false and you
supply a PNG image file, the feature will scale down to show a text label. (All buttons that support images also have
a property for a text label.) (Supported by IE Win 5+, IE Mac 5+, Gecko, Netscape 4.7+, Opera 4+, Safari.)

 SupportsDisabledOnImgAndSpan (Boolean) – When true, the browser supports the Disabled attribute on
and tags. Most browsers support the Disabled attribute on <input> tags. Microsoft has allowed it on others
which makes it easy to disable onclick and keyboard event handlers. (Supported by IE Win 5.5+.)

 SupportsFocusOnTable (Boolean) – When true, the browser supports focus on <TABLE> tags. (Supported by IE
Win 5+, FireFox 1.5+.)

 NeedsPopupFix (Boolean) – When true, the <select> tags appear to float above absolutely positioned elements.
(Supported by IE Win 5.x, IE Win 6.x.)

 ReliableScripting (Boolean) – This is kind of an on/off switch for all client side scripting. Most browsers have
sufficient functionality for running JavaScript. They support JavaScript v1.2 or higher and have some form of
debugging tools to track down errors. When false, all controls are server side only. (Supported by IE Win 4+, IE
Mac 5+, Gecko, Konqueror, OperaPresto, Safari)

 SupportsXHTMLSyntax (Boolean) – When true, the browser supports XHTML syntax allowing us to use
 and <script type='text/javascript' > tags. (Supported by IE Win 5+, IE Mac 5+, Gecko,
Konqueror, Safari, Opera 6+)

 SupportsCallbacks (Boolean) – ASP.NET 2.0 only. When true, the browser supports the ASP.NET 2.0 Client
Callback system. (IE Win 5+, Gecko, Safari)

 SupportsFilterStyles (Boolean) – When true, the browser supports the “filter” style in cascading style sheets. It is
used for special effects on these controls. (Supported by IE Win 5+)

 SupportsStyleSheets (Boolean) – When true, the browser supports style sheets through the <link> tag. (Supported
by all exception Netscape 4.x.)

 MakeTableInlineUsingDisplayStyle (String) – A string used on the style "display" to make a <table> HTML
element inline. Most use "inline". Some use "inline-block". If "", the display style cannot be made inline.

 SupportsDisplayInlineBlockStyle (Boolean) – When true, the display style supports the value "inline-block".
(Supported by IE6+, FireFox3, Safari3, Chrome1, Opera7+, Konqueror 3.5)

 SupportsDisplayInlineTableStyle (Boolean) – When true, the display style supports the value "inline-table".
(Supported by IE8, FireFox3, Safari3, Chrome1, Opera7+)

 SupportsDisplayTableStyle (Boolean) – When true, the display style supports the values "table", “table-row”, and
“table-cell”. (Supported by IE8, FireFox, Safari3, Chrome1, Opera7+, Konqueror 3.5)

 SupportsDisplayListItemStyle (Boolean) – When true, the display style supports the value "list-item". (Supported
by IE6+, FireFox, Safari3, Chrome1, Opera7+, Konqueror 3.5)

 MakeWhiteSpaceNoWrapValue (String) – A string used on the style "white-space" to prevent wrapping. Most use
"nowrap". Some use "pre". If "", white-space style is not supported by the browser.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 198 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Product Feature Support
These properties determine what controls and features are scaled down or turned off. Changing the Browser Capabilities
properties above automatically sets them. In addition, you can modify them if you have good reason (see the section below on
adding support for a new browser.)

 SupportsClientSideValidators (Boolean) – When true, the Validator controls and Conditions support their client-
side code. When false, they only operate on the server side. Defaults to true when:

SupportsInnerHTML && ReliableScripting AND SupportsJavaScript1_2
AND (SupportsGetElementById OR SupportsDocument_All)

 SupportsClientSideValidationSummary (Boolean) – When true, the ValidatorSummary control supports its
client-side code. When false, it only operates on the server side. Defaults to true when:

SupportsInnerHTML && ReliableScripting AND DIVSupportsStyleVisibility
AND SupportsJavaScript1_2
AND (SupportsGetElementById OR SupportsDocument_All)

 SupportsFieldStateControllers (Boolean) – When true, the FieldStateControllers are enabled. When false,
they are disabled. These controls are only meaningful when they can operate on the client side so they are fully
disabled without a client-side presence. Defaults to true when:

ReliableScripting AND SupportsJavaScript1_2
AND (SupportsGetElementById OR SupportsDocument_All)

 SupportsSpinners (Boolean) – When true, the spinner control on the Numeric TextBoxes is supported. When
false, the spinner does not get created. Defaults to true for the following browsers: IE Win 5+, Netscape 7+,
Gecko 1.1+, OperaPresto, and Safari.

 SupportsPopups (Boolean) – When true, all popup controls are supported: PopupCalendar,
PopupMonthYearPicker and context menu. When false, they are disabled. Defaults to true when:

ReliableScripting AND DIVSupportsStyleVisibility AND
DIVSupportsAbsolutePositioning AND (SupportsGetElementById OR
SupportsDocument_All)

 SupportsKeyboardFiltering (Boolean) – When true, the browser supports the onkeydown and onkeypress events
found on textboxes. When false, no characters are filtered. The FilteredTextBox and Numeric TextBoxes use this.
(Supported by most browsers.) Defaults to true when:

ReliableScripting AND SupportsJavaScript1_2
AND (SupportsGetElementById OR SupportsDocument_All)

 SupportsCalendar (Boolean) – When true, Calendar and MultiSelectionCalendar controls work in on the client
side. When false, they are a server side controls. Defaults to true when:

ReliableScripting AND SupportsInnerHTML AND (SupportsGetElementById OR
SupportsDocument_All)

 SupportsPopupCalendar (Boolean) – When true, the PopupCalendar control is supported. When false, it is
invisible. This affects the popup calendar feature of DateTextBox and AnniversaryTextBox as well. Defaults to
true when:

SupportsPopup AND SupportsCalendar

 SupportsContextMenu (Boolean) – When true, the ContextMenu control is supported. When false, it is
disabled. Defaults to true when:

SupportsPopups

Note: When SupportsOnContextMenuEvent is false, right click context menus are disabled.

 SupportsMonthYearPicker (Boolean) – When true, the MonthYearPicker control is supported on the client side.
When false, it is a server side control. Defaults to true when:

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 199 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

ReliableScripting AND SupportsInnerHTML AND (SupportsGetElementById OR
SupportsDocument_All)

 SupportsTimePicker (Boolean) – When true, the TimePicker control is supported on the client side. When
false, it is a server side control. Defaults to true when:

ReliableScripting AND SupportsInnerHTML AND (SupportsGetElementById OR
SupportsDocument_All)

 SupportsClientSideCreatesHTML (Boolean) – When true, the browser supports all of the scripting demanded to
create the control in HTML using client-side code. When false, these controls require the server side code generate
the HTML and scripts. Generally browsers without support for innerHTML need this set to false. Defaults to true
when:

SupportsInnerHTML AND (NOT IEMac)

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 200 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Customizing A TrueBrowser Object
Each time a new UserAgent is provided from a browser, DES creates a unique TrueBrowser object with default settings based
on its understanding of that browser. You may want to add or remove support for features by changing the TrueBrowser
object’s properties. DES offers you a delegate on PeterBlum.DES.TrueBrowser.Customize which is called for each unique
UserAgent. It is passed the TrueBrowser object. Your code reviews the current settings such as the UserAgent, browser type,
and browser version to adjust the TrueBrowser object.

You set up the Customize property in the Application_Start() method of your Global.asax file.

The delegate for the Customize property is as follows:

[C#]

public delegate void TrueBrowserCustomizer(PeterBlum.DES.TrueBrowserArgs pArgs);

[VB]

Public Delegate Sub TrueBrowserCustomizer(_
 ByVal pArgs As PeterBlum.DES.TrueBrowserArgs)

The PeterBlum.DES.TrueBrowserArgs class is defined as follows:

[C#]

public class TrueBrowserArgs : EventArgs
{
 public TrueBrowser TrueBrowser { get; }
}

[VB]

Public Class TrueBrowserArgs Inherits EventArgs
 Public Property TrueBrowser As TrueBrowser
End Class

Example

This will detect IE Mac 5 and remove support for keyboard filtering on textboxes (not necessarily something you would do in
the real world). All of this code is added to Global.asax.

[C#]

In Application_Start():

PeterBlum.DES.TrueBrowser.Customize =
 new PeterBlum.DES.TrueBrowserCustomizer(BrowserDetector);

…

public void BrowserDetector(PeterBlum.DES.TrueBrowserArgs pArgs)
{
 if (pArgs.TrueBrowser.IE && pArgs.TrueBrowser.Mac &&
 (pArgs.TrueBrowser.Version.Compare(new Version(5, 0)) == 0))
 {
 pArgs.TrueBrowser.SupportsKeyboardFiltering = false;
 }
}

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 201 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

In Application_Start():

PeterBlum.DES.TrueBrowser.Customize = _
 New PeterBlum.DES.TrueBrowserCustomizer(AddressOf BrowserDetector)

…

Public Sub BrowserDetector(ByVal pArgs As PeterBlum.DES.TrueBrowserArgs)
 If (pArgs.TrueBrowser.IE And pArgs.TrueBrowser.Mac And _
 (pArgs.TrueBrowser.Version.Compare(New Version(5, 0)) = 0)) Then

 pArgs.TrueBrowser.SupportsKeyboardFiltering = False
 End If
End Sub

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 202 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Handling UnknownBrowsers
When TrueBrowser.UnknownBrowser is true, you may assist DES to customize the TrueBrowser object. You will still
use the Customize property. The TrueBrowser object, passed to your Customizer method, offers the method
CheckBrowserType() which assists you in querying the UserAgent to detect the browser you are looking for. You must
know of a unique string within the UserAgent that is followed by the version number to use this method. PeterBlum.com often
refers to http://www.zytrax.com/tech/web/browser_ids.htm as a source for this information.

Example

In this example, UnknownBrowser is detected. The code then looks for the AmigaVoyager browser whose UserAgent looks
like this:

AmigaVoyager/3.4.4 (MorphOS/PPC native)

[C#]

In Application_Start():

PeterBlum.DES.TrueBrowser.Customize =
 new PeterBlum.DES.TrueBrowserCustomizer(BrowserDetector);

…

public void BrowserDetector(PeterBlum.DES.TrueBrowserArgs pArgs)
{
 if (pArgs.TrueBrowser.UnknownBrowser &&
 pArgs.TrueBrowser.CheckBrowserType("AmigaVoyager"))
 { /* note: These settings are for the example only */
 pArgs.TrueBrowser.ReliableBrowser = true;
 pArgs.TrueBrowser.SupportsTooltip = true;
 pArgs.TrueBrowser.SupportsJavascript1_2 = true;
 }
}

[VB]

In Application_Start():

PeterBlum.DES.TrueBrowser.Customize = _
 New PeterBlum.DES.TrueBrowserCustomizer(AddressOf BrowserDetector)

…

Public Sub BrowserDetector(ByVal pArgs As PeterBlum.DES.TrueBrowserArgs)
 If (pArgs.TrueBrowser.UnknownBrowser And _
 pArgs.TrueBrowser.CheckBrowserType("AmigaVoyager")) Then
 ' note: These settings are for the example only
 pArgs.TrueBrowser.ReliableBrowser = True
 pArgs.TrueBrowser.SupportsTooltip = True
 pArgs.TrueBrowser.SupportsJavascript1_2 = True
 End If
End Sub

http://www.zytrax.com/tech/web/browser_ids.htm�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 203 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Extending Support For More Browsers
These controls are designed to look at browser features in JavaScript, not the browsers themselves. So while Netscape 4
doesn’t support the DOM attribute “innerHTML”, the code doesn’t check for Netscape. It checks for innerHTML support.
The server side code uses the properties of TrueBrowser to determine the support and TrueBrowser was coded “at the factory”
with browsers and operating systems PeterBlum.com had access to. There are many current and future browsers that may
work well with DES that haven’t been tested. This section will help you add support for these browsers.

On the client side, most of the JavaScript code uses object detection instead of the capability flags within TrueBrowser. For
example, to determine if the DOM function document.getElementById exists, the code does this:

if (document.getElementById) { vField = document.getElementById("xyz");}

To add support for a browser, follow these steps:

1. Set up a test page with the desired controls.

2. In the Page_Load() method, get the TrueBrowser object from the PeterBlum.DES.Globals.Page.Browser
property.

3. Update the Browser Capabilities properties in the TrueBrowser object to reflect the browser that you are testing.

4. Test the control. Once it is validated, use the Customize property to establish your settings on all pages. See “The
TrueBrowser Class”.

5. Notify PeterBlum.com at Contact@PeterBlum.com with any information about success or failure of your tests. Peter
may offer to work out any bugs or limitations found if you are interested in being the primary source of testing.

mailto:Contact@PeterBlum.com�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 204 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adjusting the ErrorFormatter Based On The Browser
ErrorFormatters take advantage of some features unique to modern browsers, such as style sheet class names, tooltips and
JavaScript. When your page appears on a browser that doesn’t support the ErrorFormatter, the user may not see an error
message or it will not have the correct style sheet.

 PopupErrorFormatter requires modern style sheet attributes. Without it, the user only sees the image.

 AlertImageErrorFormatter and HyperLinkErrorFormatter require JavaScript functionality to show the alert. Without
the alert, the user only sees the image.

 TooltipImageErrorFormatter requires support of tooltips (the Title attribute) that many earlier browsers lack.
Without the tooltip, the user only sees the image.

 TextErrorFormatter uses a style sheet class name to establish its style by default. It requires the className
attribute that earlier browsers lack. Without the class name, the text does not stand out.

DES can automatically correct the ErrorFormatter for these browsers to assure you that all users get the desired error message.
It has an event handler, PeterBlum.DES.Globals.OnAdjustValidatorActionToBrowser, which is called on each Validator
to detect problems with the ErrorFormatter and update the ErrorFormatter’s properties or replace the ErrorFormatter.

By default, OnAdjustValidatorActionToBrowser uses the method
PeterBlum.DES.Globals.DefaultAdjustVAToBrowser(). This method performs the following actions and
offers properties to customize its behavior:

 If TrueBrowser.SupportsJavaScript1_2 is false and the ErrorFormatter is AlertImageErrorFormatter or
HyperLinkErrorFormatter, it can switch to a new ErrorFormatter. The property
PeterBlum.DES.Globals.ErrorFormatterWhenNoJavaScript can contain an instance of a replacement
ErrorFormatter object. If it’s null/nothing, no replacement happens. It defaults to null/nothing. All
compatible properties are copied from the original AlertImageErrorFormatter to the new ErrorFormatter. Note: If you
switch to TextErrorFormatter, your page will likely need more space for the error message.

 If TrueBrowser.SupportsPopup is false and the ErrorFormatter is PopupErrorFormatter, it can switch to a new
ErrorFormatter. The property PeterBlum.DES.Globals.ErrorFormatterWhenNoPopup can contain an instance of
a replacement ErrorFormatter object. If it’s null/nothing, no replacement happens. It defaults to
AlertImageErrorFormatter. All compatible properties are copied from the original PopupErrorFormatter to the new
ErrorFormatter. Note: If you switch to TextErrorFormatter, your page will likely need more space for the error
message.

 If TrueBrowser.SupportsTooltip is false and the ErrorFormatter is TooltipImageErrorFormatter, it can switch to
a new ErrorFormatter. The property PeterBlum.DES.Globals.ErrorFormatterWhenNoTooltip can contain an
instance of a replacement ErrorFormatter object. If it’s null/nothing, no replacement happens. It defaults to
AlertImageErrorFormatter. All compatible properties are copied from the original TooltipImageErrorFormatter to the
new ErrorFormatter. Note: If you switch to TextErrorFormatter, your page will likely need more space for the error
message.

 If TrueBrowser.SupportsClassName is false and BaseErrorFormatter.CssClass is assigned, it can apply a new
set of styles that do not use the style sheet files. The property
PeterBlum.DES.Globals.NoStyleSheetErrorFormatterControlStyle is a System.Web.UI.Style object where you
can assign properties like ForeColor and Font.Name. It defaults to a ForeColor of Color.Red.

Set the properties of PeterBlum.DES.Globals in your Application_Start() method of the Global.asax file. These
properties are all static/shared.

You can provide a substitute event handler to OnAdjustValidatorActionToBrowser. The delegate definition is:

[C#]

public delegate void AdjustValidatorActionToBrowser(
 BaseValidatorAction action);

[VB]

Public Delegate Sub AdjustValidatorActionToBrowser (_
 ByVal action As BaseValidatorAction)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolsstyleclasstopic.asp�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 205 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

action

BaseValidatorAction is an internal class that does most of the work of a Validator control. It contains most of the
same properties, such as ErrorFormatter, which you will modify or replace in your event handler.

To attach your event handler method to OnAdjustValidatorActionToBrowser, do this in the Application_Start()
method of the Global.asax file. Note: this property does not allow multiple event handlers.

[C#]

PeterBlum.DES.Globals.OnAdjustValidatorActionToBrowser =
 new AdjustValidatorActionToBrowser(MyMethod);

[VB]

 PeterBlum.DES.Globals.OnAdjustValidatorActionToBrowser = _
 New AdjustValidatorActionToBrowser(AddressOf MyMethod)

Your method can call the default method, PeterBlum.DES.Globals.DefaultAdjustVAToBrowser().

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 206 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Troubleshooting
Here are some issues that you may run into. Remember that technical support is available from support@PeterBlum.com. We
encourage you to use this knowledge base first. See also the “Troubleshooting” section of the Installation Guide, especially
for error messages involving assemblies loading.

Click on any of these topics to jump to them:

 Handling JavaScript errors

 Exploring The Current Settings

 Common Error Messages

 Runtime Problems

 Design Mode Problems

mailto:support@PeterBlum.com�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 207 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Handling JavaScript errors
You can detect a JavaScript error in Internet Explorer by going to its Tools; Internet Options menu and selecting the
Advanced tab. Then do the following:

 Mark “Display a notification about every script error”. This will show an alert box briefly describing the error when it
occurs.

 If you use Visual Studio.net (any version), unmark “Disable Script Debugging”. This will let you launch Visual
Studio.net’s powerful debugger to use with Internet Explorer. When you get an error message, click Yes then select
Visual Studio. You will be placed on the line with the error and be able to use the same debugging tools you use with
VB and C# to view the call stack and variables.

There are several causes to a JavaScript error or reasons why JavaScript fails to run.

1. The control is being updated by an AJAX system, and the error occurs after a callback. You have not set up these controls
to correctly use the DES AJAX features. See “Using These Controls with AJAX”.

2. You have set up for AJAX, but the setup missed something. It is very easy to get JavaScript errors when these controls
are not correctly set up to work within AJAX. Here are some things to look for.

 The PeterBlum.DES.AJAXManager.UsingXYZ() method is not in Page_Load() or the PageManager
control does not use the AJAXManager property correctly.

 When using AJAXManager.UsingAJAXUpdates(), it may not be properly configured.

 The AJAXManager.UsingXYZ() method is in Page_Load() but is not being called because it is nested in an
IF statement.

 The AJAXManager.UsingXYZ() method is called after another method on AJAXManager. It should be the first
statement.

 When AJAXManager.AllInAJAXUpdate is false, all web controls that interact with an AJAX update must have
their InAJAXUpdate property set to true. To determine if this is the case, set AJAXManager.AllInAJAXUpdate
to true. If the problem goes away, you know to look for a DES control that needs its InAJAXUpdate property set
to true. Set <%@ Page Trace=True %> then run the page. The trace will identify each DES control using
InAJAXUpdate.

 A control or feature is first added to the page as the result of a callback. That type of control or feature must be
identified in Page_Load() each time it’s called by using the AJAXManager.PreregisterForAJAX()
method. It’s common to overlook Hints and AutoPostBack (setup on TextBoxes, MultiSegmentDataEntry, and
NativeControlExtender controls) and DisableOnSubmit (setup on Buttons).

3. The browser does not find the JavaScript files provided by DES. This is a setup problem and will occur on all pages using
DES. By default, DES maintains its scripts inside resources of the PeterBlum.DES.dll assembly file and uses the
GetFiles.aspx file in ASP.NET 1.x or an HttpHandler in ASP.NET 2.0 to retrieve them together in a single web
request.

ASP.NET 2+ Users

The web.config file should have this HttpHandler setup in the <httpHandlers> section:

<add path="DESGetFiles.aspx" verb="GET"
type="PeterBlum.DES.GetFilesHandler, PeterBlum.DES"/>

If its missing, either add it manually or run the Web Application Updater with the “Update a web application” option.

If you are using IIS 7, you also have this tag in the <handlers> section of <system.webServer> section of the
web.config file. If it is missing, see “Using IIS 7” in the Installation Guide.

If this still does not work, you can switch DES to using the GetFiles.aspx file instead of the HttpHandler. Add this to
the <appSettings> section of the web.config file.

<add key="DES_GetFilesVirtualPath" value="~/DES/GetFiles.aspx"/>

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 208 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

ASP.NET 1.x Users

Start by following these steps:

 Open the page in the browser.

 Use the browser’s View Source command.

 Locate the text “GetFiles.aspx” within a <script> tag. It is part of a URL. Review that URL against your web site and
IIS configuration. If not found, see #5 below.

 Enter that URL within the browser. Start with your domain, followed by the URL. For example:

http://localhost/WebSite1/DES/GetFiles.aspx?various parameters

 If it comes up with a page containing this heading, then the scripts are loading.

If it reports an HTTP 404 error, the URL is not working. Consider these issues:

 IIS is mapping the URL to a different location of the GetFiles.aspx page. See “Troubleshooting: Changing the
URL to GetFiles.aspx”.

 IIS does not allow access to the folder containing the GetFiles.aspx page. Correct its security or move the file
using “Troubleshooting: Changing the URL to GetFiles.aspx”.

 You are using the DES_SeparateScripts key in the <appSettings> section of the web.config file. This occurs
when using the source code for the script files. The key tells DES to retrieve actual script files instead of the
resources. It uses another key, DES_ScriptVirtualPath, to identify the URL to the folder containing those scripts.
Correct the URL.

4. The page is incorrectly structured to run JavaScript. Some users have omitted their <html> tags or positioned them
WITHIN the <form> tags. Internet Explorer will not run any <script> tags that are outside of the <html> tag.

5. It is possible that the <script> tag that loads the GetFiles.aspx file is not found on the page. To determine this, run
the page and use View Source. Search for the text "GetFiles.aspx". If it is not found inside a <script> tag, this is the
problem.

All Users

When using Forms Authentication, users have found that their Page_Load() method is invoked several times due to
URLs requesting files that require authentication to have been approved. Your pages look for files in the DES folder,
your own images, style sheet, and themes folders. This problem is especially noticeable on a login page because login is
run when authentication has not been approved.

Solution: Make sure your DES folder and these other file support folders are given anonymous access. See “Images and
style sheets do not load when the site uses Forms Authentication”.

ASP.NET 1.x Assembly Users

This happens when the page is structured in an unusual way. It is usually caused by the last web control on the page
having a bug that does not call its own PreRender methods. Try each of these three ways to fix this:

 The </form> tag should not be flush with the prior web control on the page. Be sure there is at least one ‘ ’
before and after the </form> tag.

 Add a PlaceHolder control immediately before the </form> tag. The PlaceHolder does not change your web form’s
output but provides a working PreRender event handler.

 On the page, override the Render() method like this:

[C#]

protected override void Render(HtmlTextWriter pWriter)
{
 PeterBlum.DES.Globals.Page.AddToPage();
 base.Render(pWriter);
}

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 209 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

Overrides Protected Sub Render(ByVal pWriter As HtmlTextWriter)
 PeterBlum.DES.Globals.Page.AddToPage()
 MyBase.Render(pWriter)
End Sub

6. Your site uses Forms Authentication to force a login as the user goes to a secure page. Often users instruct Forms
Authentication to protect all files and folders, except those containing script, image, and style sheet files. DES has image
and style sheet files too. They are in the [web application folder]/DES folder. Make sure that folder is not protected
by Forms Authentication.

In the <configuration> section of your web.config file, add this to exclude the DES folder.

 <location path="DES">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>
 </location>

 <location path="DESGetFiles.aspx">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>
 </location>

7. If the error is “Unterminated string constant”, you have embedded a carriage return character into a string property such
as ErrorMessage, SummaryErrorMessage, Label.Text, ErrorFormatter.BeforeHTML,
ErrorFormatter.AfterHTML, or ErrorFormatter.Tooltip. Look at your web form in HTML text view. Search for the
string “” and “
”. Remove them or replace them with “
”.

8. If you create a control programmatically and do not assign a value to the ID property, Microsoft’s web controls often
omit adding the HTML attribute id= into the tag that describes that web control. If you attach that control to any of
DES’s controls (such as to the Validator.ControlToEvaluate property), it will generate a JavaScript error because the
client-side code cannot find your web control’s HTML without the id= attribute.
Be sure to assign the ID property on each web control you associate with DES controls.

9. Your page was called using Server.Transfer(). See “Using Server.Transfer”.

10. If the control is in a DataGrid or DataList, determine if you have set the containing column’s Visible property to false.
If it is in the header or footer row, determine if the ShowFooter or ShowHeader property is false. In each of these
cases, the DataGrid and DataList function incorrectly by asking third party controls to write their JavaScript out even
though the control will never render its HTML.

To fix this, set the Visible property to false on the DES control when the column, header or footer is invisible.
Generally this should be done in the ItemDataBound event.

In this example, there are three DateTextBoxes. ID=“HeaderDTB” is in the Header. ID=“FooterDTB” is in the Footer.
ID=“ColumnDTB” is in the 2nd column.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 210 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

[C#]

protected void Grid_ItemDataBound(object sender, DataListItemEventArgs e)
{
 Control vDTB = e.Item.FindControl("HeaderDTB");
 if (vDTB != null)
 vDTB.Visible = Grid1.ShowHeader;
 vDTB = e.Item.FindControl("FooterDTB");
 if (vDTB != null)
 vDTB.Visible = Grid1.ShowFooter;
 vDTB = e.Item.FindControl("ColumnDTB");
 if (vDTB != null)
 vDTB.Visible = Grid1.Columns[1].Visible;
}

[VB]

Protected Sub Grid_ItemDataBound(ByVal sender As object, _
 ByVal e As DataListItemEventArgs)
 Dim vDTB As Control = e.Item.FindControl("HeaderDTB")
 If Not vDTB Is Nothing Then
 vDTB.Visible = Grid1.ShowHeader
 End If
 vDTB = e.Item.FindControl("FooterDTB")
 If Not vDTB Is Nothing Then
 vDTB.Visible = Grid1.ShowFooter
 End If
 vDTB = e.Item.FindControl("ColumnDTB")
 If Not vDTB Is Nothing Then
 vDTB.Visible = Grid1.Columns[1].Visible
 End If
End Sub

11. There was other JavaScript on the page that generated an error. Once a JavaScript error occurs, all remaining code is
aborted for the current action. So if there was JavaScript code that failed during initialization, DES will not get a chance
to run its own initialization code. You will have to debug the JavaScript that isn't part of DES to fix the problem. If you
have Visual Studio, see the instructions on the top of this topic to set up the Visual Studio debugger with Internet
Explorer. If you have FireFox, get the FireBug add-in and use its debugger.

12. Look on the page for HTML comment tags: <!-- HTML in here -->. If they are enclosing any ASP.NET web
controls (anything that uses the <tagprefix:classname> syntax), this is a problem. ASP.NET ignores HTML
comment tags and lets web controls output their HTML and scripts to the page. The HTML is inside those comment tags.
When some JavaScript attempts to access that HTML (by using document.getElementById() or
DES_GetById()), it will not be found.

The solution is to switch from HTML comment tags to ASP.NET server side comment tags:

<%-- HTML in here --%>.

This completely removes the ASP.NET web controls from the page output.

ORIGINAL:

<!--
<des:RequiredTextValidator id="Validator1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />
-->

CORRECTED:

<%--
<des:RequiredTextValidator id="Validator1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required" />
--%>

https://addons.mozilla.org/en-US/firefox/addon/1843�
http://msdn.microsoft.com/en-us/library/4acf8afk(vs.71).aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 211 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

What to do when none of the suggestions above work
It is time to get PeterBlum.com tech support involved. Here’s what Peter will need from you.

1. A clear description of the problem including what controls are involved and any special settings they are using (like
AJAX).

2. The actual web form, including its user controls and code.

3. A URL to the actual live page, if possible OR a capture of the page by following these steps.

a. Open the page in Internet Explorer 6+.

b. Go through the steps it takes to reproduce the error. This may involve post backs. The goal is to have the
browser contain the exact HTML that contains the script error.

c. Use the browser’s File; Save As command with Save As Type=Web Page, Complete.

d. One HTML file and folder will be created. Zip both of them up.

e. Provide tech support with that Zip file.

4. Step-by-step instructions for reproducing the problem on the page. If the error occurs as the page is loaded, please
indicate that.

5. Email tech support at support@PeterBlum.com.

mailto:support@PeterBlum.com�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 212 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Exploring The Current Settings: DES Debugging Reports
DES has a special feature that lets you review its various components on the server. It’s called DES Debugging Reports.

Go to any page using DES controls and add a special querystring parameter to the URL. It will return a page detailing a
certain aspect of DES’s setup. This is very helpful after site deployment and for technical support.

The DES Debugging Reports expose the following information:

 Globals – Settings from the Global Settings Editor and more. Lists the values of the PeterBlum.DES.Globals object,
many of which are loaded from the custom.des.config file and web.config file.

 Page-Level – Property values on the PeterBlum.DES.Globals.Page object. If you are using the PageManager control, its
settings will be reflected here too.

 Validation – Identifies all validators, buttons, ValidationSummary and CombinedErrorMessage controls on the page.
Provides key settings to help you understand how they are working. A great way to determine why a button isn’t firing
validators.

 AJAX – How DES is setup to work with AJAX on this page. It identifies the framework and several key properties. It
lists preloaded features. If the AJAXManager.AllInAJAXUpdate property is false, it also lists every DES control on
the page, with its InAJAXUpdate property. Use it to determine if a control should be changed to
InAJAXUpdate=true. It helps debug AJAX related problems and helps you optimize the performance of the page.

 Overall configuration – Identifies the file paths and URLs for the configuration files, Appearance Folder, Licenses folder,
and the GetFiles.aspx form. Identifies the DES assemblies, by version and location. Lists all keys defined in the
<appSettings> section of the web.config file.

 Licenses – Identifies the license files found, the License Keys, and which licenses are in use. For users of Web Server
licenses, it is particularly valuable after initial deployment to production to be sure your production license files are in use
instead of the limited non-production licenses.

 Style Sheets – Since style sheets can be merged and compressed, it helps to know if your styles are being delivered to the
page. This lists the settings used by style sheets, including the URLs and file paths used to retrieve them. It also outputs
the same text from your files that is sent to the browser.

Click on any of these topics to jump to them:

 Running a DES Debugging Report from http://localhost

 Running a DES Debugging Report from when the Server is not local

 Access by known IP addresses

 Access by password

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 213 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Running a DES Debugging Report from http://localhost
When the page is run from http://localhost (or the IP address requesting the page is 127.0.0.1), just add the parameter
DESDebug= to the URL of the page. It will give you the DES Debug menu.

Note: This feature can be disabled by using the DES_DebugAllowedIPs key in <appSettings> without declaring the IP
address 127.0.0.1.

Example

http://localhost/myfolder/myform.aspx?DESDebug=

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 214 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Running a DES Debugging Report from when the Server is not local
Often in a development environment, the development web server is not accessed through http://localhost. In that case, you
can either expose the DESDebug= parameter based on the IP address, or create a custom parameter name that is in effect, a
password, so you can run these commands on a production server.

In addition, when the site is put in production, it is not safe to allow site visitors to use the DESDebug= parameter, because it
exposes sensitive information, like file paths on your server. The DESDebug= parameter will only work if you are coming
from a known IP address. For any other IP address, you create a custom parameter name.

Click on any of these topics to jump to them:

 Access by known IP addresses

 Access by password

Access by known IP addresses

You will define the DES_DebugAllowedIPs key in the <appSettings> section of the web.config file with a
semicolon-delimited list of IP addresses. These are the only IP addresses that support the DESDebug= querystring parameter.

Once setup, you use this feature by added DESDebug= to the querystring of your page’s URL. It will display the DES Debug
Menu. For example:

http://www.mydomain.com/myfolder/myform.aspx?DESDebug=

Setting up IP Addresses

Add the DES_DebugAllowedIPs key in the <appSettings> section of the web.config file with a semicolon-
delimited list of IP addresses. Explicitly include the IP address 127.0.0.1 to support http://localhost. Omit it if you do not want
support http://localhost.

Example with one IP Address:

<add key="DES_DebugAllowedIPs" value="127.0.0.1" />

Multiple IP Addresses can be specified in two ways:

 Semicolon delimited list. For example:

<add key="DES_DebugAllowedIPs" value="127.0.0.1;127.0.0.13;155:35:10:01" />

 Partial IP address. Only provide the first few segments of the IP address. All IPs matching those segments are used.
Always provide a trailing period. For example:

<add key="DES_DebugAllowedIPs" value="127.0.0." />

You have the option of setting this programmatically during application startup. Assign your path to this static/shared
property: PeterBlum.DES.DebugManager.AllowedIPs. It accepts a string in the same format as described above.

PeterBlum.DES.DebugManager.AllowedIPs = "127.0.0.1;127.0.0.13"

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 215 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Access by password

Security should be a concern, because the information displayed by these features exposes some information about your
server (particularly filepaths and how you have setup these web forms.) As a result, the DESDebug= parameter can only be
used from specific IP addresses, usually development computers within your organization. If you want to allow access from
any other computer, you need to define a password which becomes querystring parameter that replaces “DESDebug”.

SECURITY NOTES: There is no backdoor code that allows PeterBlum.com to see this information through your site. This
prevents hackers from discovering a backdoor. If you work with tech support, you may be asked to provide the information
returned from these commands. Just provide the page output, not the URL with the querystring parameter.

Once setup, add your password + “=” to the querystring of the URL of a page. It will display the DES Debug menu.

Example using the password ickypark1:

http://www.mydomain.com/myfolder/myform.aspx?ickypark1=

Setting up the Password

1. Determine a short password that will be used as your querystring parameter. It must be only alphanumeric (compatible
with HTML querystring parameter names). While a name like “debugDES” might sound like a good idea, the entire
reason for having a password as the parameter name is because this feature exposes information about your server such
as file paths that you don’t want to expose to hackers who use an obvious parameter name.

2. Add this line to the <appSettings> section of your web.config file:

<add key="DES_DebugParameterName" value="your password" />

If you are testing a different server, don’t forget to update that server’s web.config file.

Alternatively, you can set the password in the PeterBlum.DES.DebugManager.ParameterName property in the
Application_Start() method.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 216 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Common Error Messages

The page generates this error: “Access is denied: 'PeterBlum.xyz.dll'.”

The error message is identified as a “Configuration Error” and identifies the “Source Error” as <add assembly="*"/> in
the source file machine.config.

This is a very common error in ASP.NET and can happen with almost any third party control that you include in your
application. It's usually due to the Indexing Service or a virus scanner that is scanning the
[windows]\microsoft.net\framework\[version]\temporary asp.net files folder although other applications can be its
source.

Use this Microsoft Knowledge Base article to better understand it:

http://support.microsoft.com/default.aspx?scid=kb;en-us;329065

Your task is to prevent the conflicting software from accessing files in the temporary asp.net files folder.

The page generates this error: “Metadata file 'c:\windows\microsoft.net\framework\[version]\temporary
asp.net files\[more path info]\peterblum.xyz.dll' could not be found”

This is a strange and poorly documented behavior of ASP.NET. ASP.NET copies assemblies from the \bin folder into the
specified folder as the assembly is used by your web site. This error indicates that ASP.NET fails to actually copy the file or
the file is deleted out from under ASP.NET. The cause has yet to be determined, but it can happen on any assembly found in
the \bin folder.

Customers who encountered this error have found these solutions worked for them:

 The following should be removed from the web.config file:

<identity impersonate="true" />

 Install all Peter’s Data Entry Suite assemblies in the Global Assembly Cache. Remove them from the \bin folder.
Assemblies in the GAC are not copied into the Temporary ASP.NET files folder.

The page or design mode generates this error “File or assembly name PeterBlum.DES, or one of its
dependencies, was not found.”

This error may be a result of a number of things:

1. Your web application was set up to look for the PeterBlum.DES.dll in the \bin folder but it is not there. Copy it
from [DES Installation folder]\Assemblies.

2. You have installed the PeterBlum.DES.dll into the Global Assembly Cache.

3. The <% @Register tagPrefix="des" %> tag contains a specific version in the Assembly= parameter that
does not match the current PeterBlum.DES.dll’s version. Usually you can leave this unchanged.

See “What to do when you get version errors”.

The page or design mode generates this error “The located assembly's manifest definition with name
[assembly name] does not match the assembly reference.”

This means that the assembly identified as [assembly name] was compiled to use another assembly that has a particular
version. While the assembly was found, the version does not match the version that [assembly name] was compiled with.

See “What to do when you get version errors”.

The page generates this runtime error: “Operation could destabilize the runtime.”

This is a System.Security.VerificationException that happens in Application_Start when the first line of DES code is invoked.
There are numerous ways for ASP.NET to report this. You may need to do some web searches to find the one that relates to
your situation. Here are some solutions my customers have found.

 Reboot and recompile

http://support.microsoft.com/default.aspx?scid=kb;en-us;329065�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 217 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 It is an incompatibility with a setting in IIS 7.5. The default in IIS7.5 is to run all applications under an application
pool and that application pool to use a 'virtual user account'. This virtual user then has to have rights given to the
folder and have the 'load profile' turned on.

Alternatively, you can click advanced settings on a website and give it an admin username/password to 'run as' and
the problem also goes away.

http://learn.iis.net/page.aspx/624/application-pool-identities/

 In IIS, change the Application Pool to run as Network Server rather than Application Pool Identity.

The page generates this runtime error: “Type 'PeterBlum.DES.class' does not have a property named
'propertyname'”

You have entered the property name incorrectly.

The page generates this error: “Request for the permission of type
'System.Web.AspNetHostingPermission, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089' failed. [filepath]”

Only in ASP.NET 2.0. This indicates that the filepath specified is not correctly configured to run ASP.NET applications from
this computer. It usually happens when the filepath is a URL (like http://otherserver/file) or a shared filepath (like
\\computername\sharedname\folder).

 Go to the Microsoft .net Framework 2.0 Configuration program

 Expand its tree to this path: \MyComputer\Runtime Security Policy\Machine\Code Groups\All Code\LocalInternet Zone

 Add a new node that defines the URL or UNC path to use “FullTrust” permission.

The page generates this runtime error: “DES does not know what the current Page object is. Please call
PeterBlum.DES.Globals.UsingAltHttpHandler(Page) as the first line of your Page_Load method.”

See “Using Alternative HttpHandlers (including SharePoint)”.

Visual Studio generates this error: Warning: The dependency 'PeterBlum.DES, Version=4.0.#.5000' cannot
be copied to the run directory because it would overwrite the reference ''PeterBlum.DES,
Version=4.0.#.5000"'

This warning message is harmless. It tells you that Visual Studio still knows about the location of an older version of
PeterBlum.DES.dll and wanted to copy it into your \bin folder. Since you have the latest version in the \bin folder, nothing
was changed.

Sometimes you can remove this warning with these steps:

1. Open the Solution Explorer

2. Right click on the web application project node.

3. Choose Properties from the context menu.

4. Switch to the Reference Paths view.

5. If you see a file path to the older version of Peter’s Data Entry Suite, remove it.

The page generates this error: “Specified cast is not valid.” (System.InvalidCastException)

Look at the ASP.NET Declarative Syntax of any Peter’s Data Entry Suite control for a child tag that starts with
<PeterBlum.DES.Classname>. Replace the “PeterBlum.DES” with “des:” or whatever the tag prefix is for the
PeterBlum.DES assembly in the <@ Register>.

Example

Original

<des:RequiredTextValidator [properties]>
 <ErrorFormatterContainer>
 <PeterBlum.DES.TextErrorFormatter Display="Dynamic">

http://learn.iis.net/page.aspx/624/application-pool-identities/�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 218 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

 </PeterBlum.DES.TextErrorFormatter>
 </ErrorFormatterContainer>
</des:RequiredTextValidator>

Corrected (when <@ Register tagPrefix="des">):

<des:RequiredTextValidator [properties]>
 <ErrorFormatterContainer>
 <des:TextErrorFormatter Display="Dynamic">
 </des:TextErrorFormatter>
 </ErrorFormatterContainer>
</des:RequiredTextValidator>

The page generates this error: “Security Exception: The application attempted to perform an operation not
allowed by the security policy.”

You are running in a Partial Trust Environment. See “Installing into a Partial Trust Environment” in the Installation Guide.

The Type attribute refers to the type [typename]

 Confirm that the assembly associated with the “Type” or identified in the error message is in this web application’s \bin
folder or in the Global Assembly Cache.

 You will get this error if the PeterBlum.DES.dll is an earlier version than what was compiled into the other assembly.
For example, if you receive SuperDESClasses.dll and it was compiled with PeterBlum.DES.dll version 4.0.2.5000 and
you have PeterBlum.DES.dll version 4.0.1.5000 installed, this error will happen. The solution is to retrieve an update.
Go to http://www.PeterBlum.com/DES/Home.aspx.

What to do when you get version errors
 If the assembly is any from DES (they all start with “PeterBlum.DES”), run the Web Application Updater utility with

the option Update a Web Application (service release).

 If you can compile the assembly, recompile it with the same PeterBlum.DES.dll that is in use in your web application.

 For any other assembly, open your web.config file and locate an <assemblyBinding> tag. If any are found, they
map a specific assembly in the <assemblyIdentity> tag to a desired version number for that assembly.

 Correct or add its <assemblyBinding> tag.

 Make sure the <configuration> tag of the file does not have the xmlns= attribute.

http://www.peterblum.com/VAM/Home.aspx�

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 219 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Runtime Problems

Controls don’t function correctly after an AJAX callback updates the page

You have not set up these controls to correctly use the DES AJAX features. See “Using These Controls with AJAX”.

An alert appears with “Page is Loading” while interacting with a DES control

There are two reasons to see an alert with “Page is loading. Please wait”.

1. The page is actually still loading. The textboxes use JavaScript to manage keystrokes and that code is initialized near
the end of the page load. A slow modem or huge page may be the cause. The message is communicating the issue.
The keystroke will be ignored.

2. There was a JavaScript error that occurred as the page loaded and happened before any of DES’s page initialization
code. See “Handling JavaScript errors”. This kind of error should only happen during development and initial testing
of a deployed application. Once the deployed application is tested, the alert is due to a slow page load.

These controls do not filter keystrokes

There are a number of settings that can disable the client-side features of these controls.

 Browser does not support DES’s code: see “Browser Support”.

 TextBoxes have a property that turns off the keyboard feature: UseKeyboardFiltering. Is it false?

 The user has shut off JavaScript on their browser.

 There is a scripting error. This requires your own custom code added to the onkeypress or onkeydown events. See the
topic above, “Handling JavaScript errors”.

 If the page is called from Server.Transfer(), you must add some code to the original and destination pages. See
“Using Server.Transfer”.

A property that was set up programmatically is not automatically restored on postback

See “The ViewState and Preserving Properties for PostBack”.

When anything is popped up, it appears under some other fields already on the page

When you use absolute positioning for fields, such as by using the GridLayout setting on the page in Visual Studio, you can
set up a layering effect. The HTML style sheet attribute “ZIndex” controls the layering. The lower the value, the lower the
layering.

Z-Index layering is a bit tricky when your HTML is contained within an absolutely positioned <DIV>, <TABLE> or other
container. The container itself can have a z-index that is relative to its peers. Any HTML that it contains is sandwiched
between the container and the next highest peer container. Suppose you have the following HTML:

<div style='position:absolute;left:0;top:0;width=100;height=200;z-index:100>
 Span 1
 Span 2
</div>
<div style='position:absolute;left:0;top:0;width=100;height=200;z-index:200>
 Span 3
 Span 4
</div>
Span 1 is lower than Span 2. Span 3 is lower than Span 4. Everything in the first <DIV> is lower than everything in the
second one because of the z-index on each <DIV>. If the PopupCalendar was in the first <DIV>, it would also be under
everything in the second <DIV>.

Any DES pops up sets its Zindex attribute to values starting at 30000. To fix any controls that overlap these popups, reduce
their z-index attributes to be below 30000. Set each absolutely positioned container’s z-index to be on the same layer or a
lower z-index than the one containing the popup control.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 220 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Images and style sheets do not load when the site uses Forms Authentication

Graphic images do not appear and DES style sheets are not loaded when using Forms Authentication for users who are not
authenticated (such as are on the login page). This happens when [Web App Folder]\DES folder is included within Forms
Authentication. It must be excluded.

In the <configuration> section of your web.config file, add this to exclude the DES folder.

 <location path="DES">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>
 </location>

Turning of Gzip/Deflate Compression

When using the DESGetFiles.aspx HttpHandler (the default for ASP.NET 2 and higher users), browsers will receive
compressed style sheet and script data using either gzip or deflate compression. If this is causing problems, you can disable
this feature.

Add this key to the <appSettings> section of web.config:

<add key="DES_NoResponseCompression" value="" />

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 221 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Design Mode Problems

Design Mode shows “Error Creating Control” instead of the control

When you view the control in design mode, sometimes you will see the following:

Here are several causes of this: incorrectly installed software, incorrect property names or values, and bad ASP.NET text.
Visual Studio 2002 and 2003 users: If you point to the , VS.Net will show you the error in a tooltip.

 If the error is “The PeterBlum.ADME.dll is not found in the Global Assembly Cache”, you may have forgotten to
install this product. It is required. See the topic “Installing ASP.NET Design Mode Extender” in the Installation Guide.

 If the error is “No file is found at DES\DES.config”, you may have forgotten to move DES’s files into your web
application. See the topic “First Time Installation” in the Installation Guide.

 If the error is “This control cannot be displayed because its tagprefix is not registered in this web form”, you are
missing this <@ Register > tag at the top of the web form or user control:

<%@ Register TagPrefix="des" Namespace="PeterBlum.DES"
Assembly="PeterBlum.DES" %>

 If the error is “Parser error: Type 'PeterBlum.DES.class' does not have a property named 'propertyname'”, you
have entered the property name incorrectly.

 If the error is “Specified cast is not valid”, click here.

 For other errors, use the error message for guidance. If you need technical support, please include the error message.

Each control shows a small icon like this:

DES is telling you that there is a problem. Click on the icon to display an alert with details. There are two cases:

 Licensing is not setup for the control. You will not be able to use this control at runtime until licensing is corrected. See
the “Installing Licenses” section of the Installation Guide. It includes a troubleshooting topic too.

 DES cannot load from its config files in the \DES folder of your web application. You will not be able to use certain
design mode features that are based on the configuration files, but you can work with design mode in general.

When this error is detected, it indicates a problem internal to Visual Studio. VS accesses two copies of the
PeterBlum.DES.dll assembly, one for drawing in design mode and the other for other operations. These two copies are
out of sync (usually different compiles). Restarting your computer usually helps VS reset this. If you have the Clean
Solution command in your VS menus, use it first, then restart.

Each control shows a small icon like this:

This icon is intended to help you differentiate its controls from others. In many cases, the DES controls look the same as
native ASP.NET controls, such as the TextBox, Button, and Validators. Since you want your forms to use the correct controls
– either DES’s or the native ones, this is intended to assist you.

If it is excessive, DES provides a setting to diminish its use or turn it off.

1. Open the Global Settings Editor.

2. Go to the Visual Effects topic.

3. Use the ShowDESBmp property. The InBothFrameworks option shows the icon only in controls that appear in both
DES and the ASP.NET controls.

 General Features of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 222 of 222
http://www.PeterBlum.com For technical support and other assistance, see page 8

Images do not appear in design mode, but they appear at runtime

When using ASP.NET 1.x, make sure the ASP.NET Design Mode Extender (“ADME”) is set up correctly.

 Open the ADME Settings Editor. It is usually in the Visual Studio Tools menu or a button on the toolbar

 Make sure there is a project listed for the current web application you are using

 Click the Open button. Review the properties to confirm they are correct. Click OK.

 On the main window, the Design Mode is working with field should identify the web application.

 Restart Visual Studio.net

When using ASP.NET 2.0, its design mode feature-set provides a replacement to the ADME utility. It’s that replacement that
can cause problems. Here are the known cases:
 You are using the ASP.NET 1.x version of the PeterBlum.DES.dll. It only works with ADME. Remove the project

reference to it and add a reference to the one in the [DES product folder]\Assemblies\ASPNET 2_0 folder.

 You have set up remote access to the web application. Visual Studio copies files from the remote server locally. It has
failed to copy the DES\Appearance folder or all of its contents. Copy it manually to the local copy of your web
application.

The DES control lacks some properties in the Properties Editor

You may not have a license set up that supports the missing properties. For example, a Button’s DisableOnSubmit property is
not show if you don’t have a license for Peter’s Interactive Pages (or the Suite).

Working in Visual Studio’s Properties Editor stops transferring properties into the ASP.NET text

If you are using Visual Studio for a while, the Properties Editor may start to malfunction. It will not transfer settings that
you’ve made in it into the ASP.NET text page. (VS.NET has the responsibility of converting the object in the Properties
Editor into text following various design mode attributes on the controls.)

If you have any kind of malfunction in the Properties Editor, restart Visual Studio.

Intellisense does not work with these controls in Visual Studio 2002 or 2003

Visual Studio.net 2002 and 2003 do not support Intellisense on custom controls. Developers have found a hack that gives you
support. However, it is awkward and likely to require more work than it is worth. You will create an XML file using a third
party program. Then for each page that uses these controls, add the namespace= attribute to the <body> tag to point to that
XML file. PeterBlum.com will not provide any additional technical support on this issue.

1. Get the program Intellisense Generator from BlueVision Software at:
http://www.bluevisionsoftware.com/WebSite/ProductsAndServicesInfo.aspx?ID=9

2. Run the program on the PeterBlum.DES.dll and save the file in a location where a URL can reference it such as in
your \aspnet_client folder.

3. Update your web form’s <body> tag like this:

<body namespace="http://[URL]">

Intellisense is missing some properties from these controls in Visual Studio 2005

Visual Studio 2005 caches the Intellisense text it extracts from assemblies. Sometimes this cache is out of date, causing
properties and methods introduced after the data was cached to be ignored.

1. Exit Visual Studio

2. In Windows Explorer, go to [documents and settings]\[user name]\Application Data\Microsoft\Visual
Studio\8.0\Reflected Schemas

3. Delete all of the files in that folder.

http://www.bluevisionsoftware.com/WebSite/ProductsAndServicesInfo.aspx?ID=9�

	License Information
	Platform Support
	Technical Support and Other Assistance
	Preparing a Page for DES Controls
	Reminders As You Add Controls To The Page
	The PageManager Control
	Features
	Using the PageManager
	Adding the PageManager
	PageManager Properties

	NativeControlExtender Control
	Features
	Using the NativeControlExtender
	Adding the NativeControlExtender
	NativeControlExtender Properties

	The LocalizableLabel Control
	Using the LocalizableLabel Control
	Adding the LocalizableLabel Control
	Properties of the LocalizableLabel Control

	Global Settings Editor and custom.DES.config File
	Using the Global Settings Editor
	Programmatically Assigning Globals
	DES.config and Custom.DES.config File

	Expanded Properties Editor
	Using These Controls with AJAX
	AJAXManager Properties
	Other AJAXManager Methods
	Analyzing the InAJAXUpdate Properties on DES Controls

	The String Lookup System
	Datasources
	Elements Needed In Your DataSource
	Using the Resource Manager
	Using a Database
	Writing Your Own Lookup String Event Handler
	Calling The String Lookup System

	The ViewState and Preserving Properties for PostBack
	Page Level Properties and Methods Used by Most Controls
	What is the PeterBlum.DES.Globals.Page property?
	Properties on PeterBlum.DES.Globals.Page
	Methods on PeterBlum.DES.Globals.Page

	Establishing Localization for the Web Form
	Using Style Sheets
	Adding Style Sheet Files To The Page
	Identifying the Style Sheet File for a Specific Control
	Customizing the URLs to Each Style Sheet File
	Browser Sensitive Style Sheet Class Names
	Compressing and Merging Files
	Special Parsing Features
	Support for Your Own Style Sheet Files

	Using Server.Transfer
	Using Alternative HttpHandlers (including SharePoint)
	Using a Redistribution License
	How ASP.NET Influences Peter’s Data Entry Suite
	Themes and Skins
	Automatic linking to the DES Style Sheet file
	Localization
	Validation on AutoPostBack of the TextBox and other data entry controls
	ValidationGroup property on submit controls
	Page.SetFocus vs. PeterBlum.DES.Globals.Page.InitialFocusControl
	XHTML Compatibility
	Obsolete features found in the ASP.NET 1.x assemblies of DES

	Browser Support
	The TrueBrowser Class
	Customizing A TrueBrowser Object
	Extending Support For More Browsers
	Adjusting the ErrorFormatter Based On The Browser

	Troubleshooting
	Handling JavaScript errors
	Exploring The Current Settings: DES Debugging Reports
	Common Error Messages
	Runtime Problems
	Design Mode Problems

	Word Bookmarks
	TableOfContents
	DevelopersKit
	ApplicationStart
	PM_Using
	PM_Adding
	PM_Properties
	NCE_Using
	NCE_Adding
	NCE_Properties
	Label_Using
	Label_Adding
	Label_Properties
	GlobalSettingsEditor
	customdesconfig
	AJAX_Microsoft
	MSAJAXIncludeAll
	MSAJAXGoodPerformance
	MSAJAXBestPerformance
	AJAX_Telerik
	RadAjaxIncludeAll
	RadAjaxGoodPerformance
	RadAjaxBestPerformance
	AJAX_Infragistics
	CultureName
	StringGroup
	StringLookupSystem_StringGroup
	String_Resources
	String_Database
	PageLevel
	CultureInfoProperty
	JavaScriptEnabled
	DESPage_SetFocusFunctionName
	DESPage_EnableButtonImageEffects
	Style_AddToPage
	Style_ByControl
	InvalidCastException

